搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深亚微米SOI射频 LDMOS功率特性研究

毕津顺 海潮和 韩郑生

引用本文:
Citation:

深亚微米SOI射频 LDMOS功率特性研究

毕津顺, 海潮和, 韩郑生

Study on power characteristics of deep sub-micron SOI RF LDMOS

Bi Jin-Shun, Hai Chao-He, Han Zheng-Sheng
PDF
导出引用
  • 提出了一种SOI LDMOS大信号等效电路模型,并给出了功率增益和输入阻抗表达式. 基于制备的深亚微米SOI射频LDMOS,测试了功率增益和功率附加效率. 深入研究了SOI LDMOS功率特性与栅长,单指宽度,工作电压和频率之间关系. 栅长由0.5 μm减到0.35 μm时,小信号功率增益增加44%,功率附加效率峰值增加9%. 单指宽度由20 μm增加到40 μm,600 μm /0.5 μm器件小信号功率增益降低23%,功率附加效率峰值降低9.3%. 漏端电压由3 V增加到5 V,600 μm /0.3
    A large signal equivalent circuit model of SOI LDMOS is proposed. Power gain and power-added efficiency of n-type LDMOS are modeled. Deep sub-micron SOI LDMOS was fabricated and measured. We investigated the dependence of SOI LDMOS power characteristics on channel length, single gate finger width, supply voltage and working frequency. Power gain and power-added efficiency are increased by 44% and 9%, respectively, with channel length reduction from 0.5 μm to 0.35 μm. When single gate finger width is increased from 20 μm to 40 μm, power gain and power-added efficiency of 600 μm /0.5 μm device are decreased by 23% and 9.3%, respectively. Power-gain and power-added efficiency are increased by 13% and 5.5%, respectively, with supply voltage increased from 3 V to 5 V. When the working frequency is increased from 2.5 GHz to 3.0 GHz, power gain and power added efficiency of LDMOS are decreased by 15% and 4.5%, respectively.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2006CB3027-01)资助的课题.
    [1]

    Ajmera A, Sleight J W, Assaderaghi F 1999 Proceedings Symposium VLSI Technology 15

    [2]

    Nakagawa A, Yasuhara N, Omura I 1992 IEDM 229

    [3]

    Van Rijs F, Visser H A, Magnee P H C 1998 IEDM 957

    [4]

    Raskin J P, Viviani A, Flandre D 1997 IEEE Trans Electron Devices 44 2252

    [5]

    Matsumoto S, Hiraoka H, Sakai T 2001 IEEE Trans Electron Devices 48 1251

    [6]

    Qiao M, Zhang B, Li Z J 2007 Acta. Phys. Sin. 56 3990 (in Chinese) [乔 明、 张 波、 李肇基 2007 物理学报 56 3990]

    [7]

    Lu L S, Sun Z L, Sun W F 2005 Chinese Journal of Semiconductors 26 2286 (in Chinese) [陆生礼、 孙智林、 孙伟锋 2005 半导体学报 26 2286]

    [8]

    Luo X R, Li Z J, Zhang B 2006 Chinese Journal of Semiconductors 27 881 (in Chinese) [罗小蓉、 李肇基、 张 波 2006 半导体学报 27 881] 〖9] Duan B X, Zhang B, Li Z J 2006 Chinese Journal of Semiconductors 27 1814 (in Chinese) [段宝兴、 张 波、 李肇基 2006 半导体学报 27 1814]

    [9]

    Wang L, Yang H Y 2010 Acta. Phys. Sin. 59 571 (in Chinese) [乔 明、 张 波、 李肇基等 2010 物理学报 59 571]

    [10]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. 16 3754

    [11]

    Li Q, Zhang B, Li Z J 2008 Acta. Phys. Sin. 57 6565 (in Chinese) [李 琦、 张 波、 李肇基 2008 物理学报 57 6565]

    [12]

    Ouisse T, Cristoloveanu S, Borel G 1992 Solid-State Electronics 141

    [13]

    Muller D, Giry A, Judong F 2007 IEEE Trans Electron Devices 54 861

    [14]

    Yang R, Li J F, Qian H 2006 IEEE Electron Device Letters 27 917

  • [1]

    Ajmera A, Sleight J W, Assaderaghi F 1999 Proceedings Symposium VLSI Technology 15

    [2]

    Nakagawa A, Yasuhara N, Omura I 1992 IEDM 229

    [3]

    Van Rijs F, Visser H A, Magnee P H C 1998 IEDM 957

    [4]

    Raskin J P, Viviani A, Flandre D 1997 IEEE Trans Electron Devices 44 2252

    [5]

    Matsumoto S, Hiraoka H, Sakai T 2001 IEEE Trans Electron Devices 48 1251

    [6]

    Qiao M, Zhang B, Li Z J 2007 Acta. Phys. Sin. 56 3990 (in Chinese) [乔 明、 张 波、 李肇基 2007 物理学报 56 3990]

    [7]

    Lu L S, Sun Z L, Sun W F 2005 Chinese Journal of Semiconductors 26 2286 (in Chinese) [陆生礼、 孙智林、 孙伟锋 2005 半导体学报 26 2286]

    [8]

    Luo X R, Li Z J, Zhang B 2006 Chinese Journal of Semiconductors 27 881 (in Chinese) [罗小蓉、 李肇基、 张 波 2006 半导体学报 27 881] 〖9] Duan B X, Zhang B, Li Z J 2006 Chinese Journal of Semiconductors 27 1814 (in Chinese) [段宝兴、 张 波、 李肇基 2006 半导体学报 27 1814]

    [9]

    Wang L, Yang H Y 2010 Acta. Phys. Sin. 59 571 (in Chinese) [乔 明、 张 波、 李肇基等 2010 物理学报 59 571]

    [10]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. 16 3754

    [11]

    Li Q, Zhang B, Li Z J 2008 Acta. Phys. Sin. 57 6565 (in Chinese) [李 琦、 张 波、 李肇基 2008 物理学报 57 6565]

    [12]

    Ouisse T, Cristoloveanu S, Borel G 1992 Solid-State Electronics 141

    [13]

    Muller D, Giry A, Judong F 2007 IEEE Trans Electron Devices 54 861

    [14]

    Yang R, Li J F, Qian H 2006 IEEE Electron Device Letters 27 917

计量
  • 文章访问数:  5027
  • PDF下载量:  781
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-21
  • 修回日期:  2010-05-19
  • 刊出日期:  2011-01-15

深亚微米SOI射频 LDMOS功率特性研究

  • 1. 中国科学院微电子研究所,北京 100029
    基金项目: 

    国家重点基础研究发展计划(批准号: 2006CB3027-01)资助的课题.

摘要: 提出了一种SOI LDMOS大信号等效电路模型,并给出了功率增益和输入阻抗表达式. 基于制备的深亚微米SOI射频LDMOS,测试了功率增益和功率附加效率. 深入研究了SOI LDMOS功率特性与栅长,单指宽度,工作电压和频率之间关系. 栅长由0.5 μm减到0.35 μm时,小信号功率增益增加44%,功率附加效率峰值增加9%. 单指宽度由20 μm增加到40 μm,600 μm /0.5 μm器件小信号功率增益降低23%,功率附加效率峰值降低9.3%. 漏端电压由3 V增加到5 V,600 μm /0.3

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回