搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合

王鑫华 赵妙 刘新宇 蒲颜 郑英奎 魏珂

AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合

王鑫华, 赵妙, 刘新宇, 蒲颜, 郑英奎, 魏珂
PDF
导出引用
导出核心图
  • 利用蓝宝石衬底的AlGaN/AlN/GaN 高电子迁移率器件(HEMT)的电容电压(C-V)特性,对电子费米能级与二维电子气面密度的经验关系进行表征,其结果对器件电荷控制模型的建立,跨导及电容表达式的简化有重要意义.文章创新性地提出参数α用于表征二维势阱对沟道电子限制能力,并认为α越小则二维势阱的沟道电子限制能力越强.利用上述经验关系来拟合电容,可以获得与实测电容很好的一致性.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB327500),国家自然科学基金(批准号:60976059,60890191)资助的课题.
    [1]

    Jimenez J L, Chowdhury U 2008 IEEE 46th Annual International Reliability Physics Symposium Phoenix, USA, APR 27-MAY 01, 2008 p429

    [2]

    Guo L, Wang X, Wang C, Xiao H, Ran J, Luo W, Wang X, Wang B, Fang C, Hu G 2008 Microelectronics Journal 39 777

    [3]

    Lisesivdin S B, Balkan N, Makarovsky O, Patane A, Yildiz A, Caliskan M D, Kasap M, Ozcelik S, Ozbay E 2009 Journal of Applied Physics 105 6

    [4]

    Qian F, Leach J H, Jinqiao X, Ozgur U, Morkoc H, Zhou L, Smith D J 2009 Proceedings of the International Society for Optical Engineering San Jose, USA, January 26—29, 2009 p14

    [5]

    Kumar S P, Agrawal A, Kabra S, Gupta M, Gupta R S 2006 Microelectronics Journal 37 1339

    [6]

    Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D and Ruden P P 2001 IEEE Transactions on Electron Devices 48 535

    [7]

    Parvesh G, Sujata P, Subhasis H, Mridula G, Gupta R S 2007 Microelectron. J. 38 848

    [8]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese) [刘 杰、郝 跃、冯 倩、王 冲、张进城、郭亮良 2008 物理学报 56 3483]

    [9]

    Zhang J F, Wang C, Zhang J C, Hao Y 2006 Chin. Phys. 15 1060

    [10]

    Zhang J F, Zhang J C, Hao Y 2004 Chin. Phys. 13 1334

    [11]

    Wang X H, Zhao M, Liu X Y, Pu Y, Zheng Y K, Wei K 2010 Chin. Phys. B 19 097302

    [12]

    Delagebeaudeuf D, Linh N T 1982 IEEE Transactions on Electron Devices 29 955

    [13]

    Aziz M A, El-Banna M 1996 Thirteenth National Radio Science Conference Cairo, Egypt, March 19—21,1996 p547

    [14]

    Frank S, Sankar D S 1984 Phys. Rev. B 30 840

    [15]

    Norris G B, Look D C, Kopp W, Klem J, Morkoc H 1985 Appl. Phys. Lett. 47 423

    [16]

    Kwangman P, Hong Bae K, Kae Dal K 1987 IEEE Transactions on Electron Devices 34 2422

    [17]

    Cazaux J L, Ng G I, Pavlidis D, Chau H F 1988 IEEE Transactions on Electron Devices 35 1223

    [18]

    Ando Y, Itoh T 1988 IEEE Transactions on Electron Devices 35 2295

    [19]

    Shey A J, Ku W H 1988 IEEE Electron Device Letters 9 624

    [20]

    Kokorev M F, Maleev N A 1996 Solid-State Electronics 39 297

    [21]

    Liu W L, Chen Y L, Balandin A A, Wang K L 2006 Journal of Nanoelectronics and Optoelectronics 1 258

    [22]

    Moloney M J, Ponse F, Morkoc H 1985 IEEE Transactions on Electron Devices 32 1675

    [23]

    Karmalkar S 1997 IEEE Transactions on Electron Devices 44 862

    [24]

    Ketterson A A, Morkoc H 1986 IEEE Transactions on Electron Devices 33 1626

    [25]

    Anwar A F M, Liu K W 1993 IEEE Transactions on Electron Devices 40 1174

    [26]

    Ando Y, Itoh T 1990 IEEE Transactions on Electron Devices 37 67

    [27]

    Tong K Y 1991 Electronics Letters 27 668

    [28]

    Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J, Redwing J M 2000 Journal of Applied Physics 87 8070

    [29]

    Khondker A N, Anwar A F M, Islam M A, Limoncelli L, Wilson D 1986 IEEE Transactions on Electron Devices 33 1825

  • [1]

    Jimenez J L, Chowdhury U 2008 IEEE 46th Annual International Reliability Physics Symposium Phoenix, USA, APR 27-MAY 01, 2008 p429

    [2]

    Guo L, Wang X, Wang C, Xiao H, Ran J, Luo W, Wang X, Wang B, Fang C, Hu G 2008 Microelectronics Journal 39 777

    [3]

    Lisesivdin S B, Balkan N, Makarovsky O, Patane A, Yildiz A, Caliskan M D, Kasap M, Ozcelik S, Ozbay E 2009 Journal of Applied Physics 105 6

    [4]

    Qian F, Leach J H, Jinqiao X, Ozgur U, Morkoc H, Zhou L, Smith D J 2009 Proceedings of the International Society for Optical Engineering San Jose, USA, January 26—29, 2009 p14

    [5]

    Kumar S P, Agrawal A, Kabra S, Gupta M, Gupta R S 2006 Microelectronics Journal 37 1339

    [6]

    Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D and Ruden P P 2001 IEEE Transactions on Electron Devices 48 535

    [7]

    Parvesh G, Sujata P, Subhasis H, Mridula G, Gupta R S 2007 Microelectron. J. 38 848

    [8]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese) [刘 杰、郝 跃、冯 倩、王 冲、张进城、郭亮良 2008 物理学报 56 3483]

    [9]

    Zhang J F, Wang C, Zhang J C, Hao Y 2006 Chin. Phys. 15 1060

    [10]

    Zhang J F, Zhang J C, Hao Y 2004 Chin. Phys. 13 1334

    [11]

    Wang X H, Zhao M, Liu X Y, Pu Y, Zheng Y K, Wei K 2010 Chin. Phys. B 19 097302

    [12]

    Delagebeaudeuf D, Linh N T 1982 IEEE Transactions on Electron Devices 29 955

    [13]

    Aziz M A, El-Banna M 1996 Thirteenth National Radio Science Conference Cairo, Egypt, March 19—21,1996 p547

    [14]

    Frank S, Sankar D S 1984 Phys. Rev. B 30 840

    [15]

    Norris G B, Look D C, Kopp W, Klem J, Morkoc H 1985 Appl. Phys. Lett. 47 423

    [16]

    Kwangman P, Hong Bae K, Kae Dal K 1987 IEEE Transactions on Electron Devices 34 2422

    [17]

    Cazaux J L, Ng G I, Pavlidis D, Chau H F 1988 IEEE Transactions on Electron Devices 35 1223

    [18]

    Ando Y, Itoh T 1988 IEEE Transactions on Electron Devices 35 2295

    [19]

    Shey A J, Ku W H 1988 IEEE Electron Device Letters 9 624

    [20]

    Kokorev M F, Maleev N A 1996 Solid-State Electronics 39 297

    [21]

    Liu W L, Chen Y L, Balandin A A, Wang K L 2006 Journal of Nanoelectronics and Optoelectronics 1 258

    [22]

    Moloney M J, Ponse F, Morkoc H 1985 IEEE Transactions on Electron Devices 32 1675

    [23]

    Karmalkar S 1997 IEEE Transactions on Electron Devices 44 862

    [24]

    Ketterson A A, Morkoc H 1986 IEEE Transactions on Electron Devices 33 1626

    [25]

    Anwar A F M, Liu K W 1993 IEEE Transactions on Electron Devices 40 1174

    [26]

    Ando Y, Itoh T 1990 IEEE Transactions on Electron Devices 37 67

    [27]

    Tong K Y 1991 Electronics Letters 27 668

    [28]

    Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J, Redwing J M 2000 Journal of Applied Physics 87 8070

    [29]

    Khondker A N, Anwar A F M, Islam M A, Limoncelli L, Wilson D 1986 IEEE Transactions on Electron Devices 33 1825

  • [1] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响. 物理学报, 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [2] 李东临, 曾一平. InP基HEMT器件中二维电子气浓度及分布与沟道层厚度关系的理论分析. 物理学报, 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
    [3] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, 69(7): 077302. doi: 10.7498/aps.69.20191931
    [4] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [5] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [6] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析 . 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [7] 王弘, 王栋, 王民, 陆卫, 沈学础, 王少伟. Bi2Ti2O7/Si薄膜的制备及C-V特性研究. 物理学报, 2001, 50(12): 2461-2465. doi: 10.7498/aps.50.2461
    [8] 王华. Si基Bi4Ti3O12铁电薄膜的制备与特性研究. 物理学报, 2004, 53(4): 1265-1270. doi: 10.7498/aps.53.1265
    [9] 刘红, 印海建, 夏树宁. 形变碳纳米管场效应晶体管的电学性质. 物理学报, 2009, 58(12): 8489-8500. doi: 10.7498/aps.58.8489
    [10] 王仁智, 郑永梅, 李书平. 平均键能Em的物理内涵探讨. 物理学报, 2001, 50(2): 273-277. doi: 10.7498/aps.50.273
    [11] 李书平, 王仁智. Schottky势垒高度理论计算中的平均键能方法. 物理学报, 2003, 52(3): 542-546. doi: 10.7498/aps.52.542
    [12] 崔利杰, 曾一平, 朱战平, 王保强, 仇志军, 蒋春萍, 桂永胜, 疏小舟, 郭少令, 褚君浩. 变In组分沟道的MM-HEMT材料电子输运特性研究. 物理学报, 2003, 52(11): 2879-2882. doi: 10.7498/aps.52.2879
    [13] 杨学文, 郑家贵, 张静全, 冯良桓, 蔡 伟, 蔡亚平, 李 卫, 黎 兵, 雷 智, 武莉莉. CdTe/CdS太阳电池I-V,C-V特性研究. 物理学报, 2006, 55(5): 2504-2507. doi: 10.7498/aps.55.2504
    [14] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [15] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [16] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响. 物理学报, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [17] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [18] 段俊丽, 郝立超. 表面电荷与体陷阱对GaN基HEMT器件热电子和量子效应的影响研究. 物理学报, 2010, 59(4): 2746-2752. doi: 10.7498/aps.59.2746
    [19] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [20] 彭承, 盛篪, 孙恒慧. 单边分子束外延硅pn结C-V关系的新特点. 物理学报, 1988, 37(6): 1025-1029. doi: 10.7498/aps.37.1025
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3844
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-22
  • 修回日期:  2010-07-19
  • 刊出日期:  2011-02-05

AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合

  • 1. 中国科学院微电子研究所,微电子器件与集成技术重点实验室,北京 100029
    基金项目: 

    国家重点基础研究发展计划(批准号:2010CB327500),国家自然科学基金(批准号:60976059,60890191)资助的课题.

摘要: 利用蓝宝石衬底的AlGaN/AlN/GaN 高电子迁移率器件(HEMT)的电容电压(C-V)特性,对电子费米能级与二维电子气面密度的经验关系进行表征,其结果对器件电荷控制模型的建立,跨导及电容表达式的简化有重要意义.文章创新性地提出参数α用于表征二维势阱对沟道电子限制能力,并认为α越小则二维势阱的沟道电子限制能力越强.利用上述经验关系来拟合电容,可以获得与实测电容很好的一致性.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回