搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rosenberg问题的Noether-Lie对称性与守恒量

刘晓巍 李元成

Rosenberg问题的Noether-Lie对称性与守恒量

刘晓巍, 李元成
PDF
导出引用
  • 研究Rosenberg问题的对称性与守恒量.给出Rosenberg问题的Noether-Lie对称性的定义和判据,以及由Noether-Lie对称性导出Noether守恒量和Hojman守恒量.
    [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen.Math. Phys. KI II 235

    [2]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [3]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [4]

    Mei F X 2001 Chin. Phys. 10 177

    [5]

    Li Z P 1993 Classical and quantal dynamics of constrained systems and Their symmetrical properties (Beijing: Beijing Polytechnic University press) (in Chinese) [李子平 1993 经典和量子约束系统及其对称性质 (北京:北京工业大学出社)]

    [6]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [7]

    Bahar L Y,Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [8]

    Mei F X 2000 Acta Mech. Sin. 32 466 (in Chinese)[梅凤翔 2000 力学学报32 466]

    [9]

    Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 物理学报52 1048]

    [10]

    Zhang Y 2003 Acta Phys. Sin. 52 1832 (in Chinese) [张 毅 2003 物理学报 52 1832]

    [11]

    Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [12]

    Lou Z M 2004 Acta Phys. Sin. 53 2046 (in Chinese) [楼智美 2004 物理学报53 2046]

    [13]

    Luo S K,Guo Y X,Mei F X 2004 Acta Phys. Sin. 53 2413 (in Chinese) [罗绍凯、郭永新、梅凤翔 2004 物理学报 53 2413]

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Xu X J,Mei F X,Qin M C 2004 Chin. Phys. 13 1999

    [16]

    Mei F X 2005 Transactions of Beijing Institute of Technology 25 283(in Chinese) [梅凤翔 2005 北京理工大学学报 25 283]

    [17]

    Li Y C,Xia L L,Wang X M,Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成、夏丽莉、王小明、刘晓巍 2010 物理学报 59 3639]

    [18]

    Rosenberg R M 1977 Analytical Dynamics of Discrete Systems (New York: Plenum Press)

    [19]

    Ge W H,Zhang Y,Xue Y 2010 Acta Phys. Sin. 59 4434 (in Chinese) [葛伟宽、张 毅、薛 纭 2010 物理学报 59 4434]

    [20]

    Novoselov V S 1966 Variational Priciples in Mechanics (Leningrad: LGV Press) (in Russian)

    [21]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔 1985 非完整力学基础 (北京:北京工业学院出版社)]

  • [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen.Math. Phys. KI II 235

    [2]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [3]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [4]

    Mei F X 2001 Chin. Phys. 10 177

    [5]

    Li Z P 1993 Classical and quantal dynamics of constrained systems and Their symmetrical properties (Beijing: Beijing Polytechnic University press) (in Chinese) [李子平 1993 经典和量子约束系统及其对称性质 (北京:北京工业大学出社)]

    [6]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [7]

    Bahar L Y,Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [8]

    Mei F X 2000 Acta Mech. Sin. 32 466 (in Chinese)[梅凤翔 2000 力学学报32 466]

    [9]

    Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 物理学报52 1048]

    [10]

    Zhang Y 2003 Acta Phys. Sin. 52 1832 (in Chinese) [张 毅 2003 物理学报 52 1832]

    [11]

    Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [12]

    Lou Z M 2004 Acta Phys. Sin. 53 2046 (in Chinese) [楼智美 2004 物理学报53 2046]

    [13]

    Luo S K,Guo Y X,Mei F X 2004 Acta Phys. Sin. 53 2413 (in Chinese) [罗绍凯、郭永新、梅凤翔 2004 物理学报 53 2413]

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Xu X J,Mei F X,Qin M C 2004 Chin. Phys. 13 1999

    [16]

    Mei F X 2005 Transactions of Beijing Institute of Technology 25 283(in Chinese) [梅凤翔 2005 北京理工大学学报 25 283]

    [17]

    Li Y C,Xia L L,Wang X M,Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成、夏丽莉、王小明、刘晓巍 2010 物理学报 59 3639]

    [18]

    Rosenberg R M 1977 Analytical Dynamics of Discrete Systems (New York: Plenum Press)

    [19]

    Ge W H,Zhang Y,Xue Y 2010 Acta Phys. Sin. 59 4434 (in Chinese) [葛伟宽、张 毅、薛 纭 2010 物理学报 59 4434]

    [20]

    Novoselov V S 1966 Variational Priciples in Mechanics (Leningrad: LGV Press) (in Russian)

    [21]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔 1985 非完整力学基础 (北京:北京工业学院出版社)]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4393
  • PDF下载量:  770
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-08
  • 修回日期:  2010-10-16
  • 刊出日期:  2011-07-15

Rosenberg问题的Noether-Lie对称性与守恒量

  • 1. 中国石油大学(华东)物理科学与技术学院,青岛 266555

摘要: 研究Rosenberg问题的对称性与守恒量.给出Rosenberg问题的Noether-Lie对称性的定义和判据,以及由Noether-Lie对称性导出Noether守恒量和Hojman守恒量.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回