搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响

杨天勇 孔春阳 阮海波 秦国平 李万俊 梁薇薇 孟祥丹 赵永红 方亮 崔玉亭

退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响

杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭
PDF
导出引用
导出核心图
  • 采用射频磁控溅射法在石英玻璃衬底上制备了ZnO:Mn薄膜, 结合N+ 注入获得Mn-N共掺ZnO薄膜, 进而研究了退火温度对其结构及室温铁磁性的影响. 结果表明, 退火后ZnO:(Mn, N) 薄膜中Mn2+和N3-均处于ZnO晶格位, 没有杂质相生成. 退火温度的升高 有助于修复N+注入引起的晶格损伤, 同时也会让N逸出薄膜, 导致受主(NO)浓度降低. 室温铁磁性存在于ZnO:(Mn, N)薄膜中, 其强弱受NO浓度的影响, 铁磁性起源可采用束缚磁极化子模型进行解释.
    • 基金项目: 重庆市自然科学基金(批准号: CSTC. 2011BA4031)资助的课题.
    [1]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [3]

    Dietl T, Ohno H, Matsukura F, Clibert J, Ferrand D 2000 Science 287 1019

    [4]

    Souza T M, Cunha Lima da I C, Boselli M A 2008 Appl. Phys. Lett. 92 152511

    [5]

    Zhao L, Lu P F, Yu Z Y, Guo X T, Shen Y, Ye H, Yuan G F, Zhang L 2010 J. Appl. Phys. 108 113924

    [6]

    Zou C W, Wang H J, Yi M L, Li M, Liu C S, Guo L P, Fu D J, Kang T W 2010 Appl. Surf. Sci. 256 2453

    [7]

    Qiu D J, Wang J, Ding K B, Shi H J, Jia Y 2008 Acta Phys. Sin. 57 5249 (in Chinese) [邱东江, 王俊, 丁扣宝, 施红军, 郏寅 2008 物理学报 57 5249]

    [8]

    Lu Z L, Yan G Q, Wang S, Zou W Q, Mo Z R, Lü L Y, Zhang F M, Du Y W, Xu M X, Xia Z H 2008 J. Appl. Phys. 104 033919

    [9]

    Yang Z, Liu J L, Biasini M, Beyermann W P 2008 Appl. Phys. Lett. 92 042111

    [10]

    Yan H L, Zhong X L, Wang J B, Huang G J, Ding S L, Zhou G C, Zhou Y C 2007 Appl. Phys. Lett. 90 082503

    [11]

    Xu Q Y, Schmidt H, Hartmann L, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2007 Appl. Phys. Lett. 91 092503

    [12]

    Wang Q, Sun Q, Jena P, Kawazoe K 2004 Phys. Rev. B 70 052408

    [13]

    Zou W Q, Lu Z L, Wang S, Liu Y, Lu L, Li L, Zhang F M, Dou Y W 2009 Acta Phys. Sin. 58 5763 (in Chinese) [邹文琴, 路忠林, 王申, 刘圆, 陆路, 郦莉, 张凤鸣, 都有为 2009 物理学报 58 5763]

    [14]

    Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L 2006 Appl. Phys. Lett. 88 242502

    [15]

    Peng L P, Fang L, Yang X F, Li Y J, Huang Q L, Wu F, Kong C Y 2009 J. Alloys Compd. 484 576

    [16]

    Samanta K, Bhattacharya P, Katiyar R S, Lwamoto W, Pagliuso P G, Rettori C 2006 Phys. Rev. B 73 245213

    [17]

    Asmar A R, Atanas J P, Ajaka M, Zaatar Y, Ferblantier G, Sauvajol J L, Jabbour J, Juillaget S, Foucaran A 2005 J. Cryst. Growth 279 399

    [18]

    Kaschner A, Haboeck U, Martin S, Matthias S, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner Z, Alves H R, Hofmann D M, Meyer B K 2002 Appl. Phys. Lett. 80 1909

    [19]

    Friedrich F, Gluba M A, Nickel N H 2009 Appl. Phys. Lett. 95 141903

    [20]

    Wang J B, Zhong H M, Li Z F, Liu W 2006 Appl. Phys. Lett. 88 101913

    [21]

    Bundesmann C, Ashkenov N, Shubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 Appl. Phys. Lett. 83 1974

    [22]

    Wang J B, Huang G J, Zhong X L, Sun L Z, Zhou T C, Liu E H 2006 Appl. Phys. Lett. 88 252502

    [23]

    Yadav H K, Sreenivas K, Katiyar R S, Gupta V 2007 J. Appl. D: Appl. Phys. 40 6005

    [24]

    Hu Y M, Wang C Y, Lee S S, Han T C, Chou W Y, Chen G J 2011 J. Raman Spectrosc. 42 434

    [25]

    He Q B, Xu J Y, Li X H, Kamzin A, Kamzina L 2007 Chin. Phys. Lett. 24 3500

    [26]

    Cong C J, Liao L, Liu Q Y, Li J C, Zhang K L 2006 Nanotechnology 17 1520

    [27]

    Tang K, Gu S L, Zhu S M, Liu J G, Chen H, Ye J D, Zhang R, Zheng Y D 2009 Appl. Phys. Lett. 95 192106

    [28]

    Yang H J, Zhao L Y, Zhang Y J, Wang Y X, Liu H L, Wei M B 2007 Solid State Commun. 143 566

  • [1]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [3]

    Dietl T, Ohno H, Matsukura F, Clibert J, Ferrand D 2000 Science 287 1019

    [4]

    Souza T M, Cunha Lima da I C, Boselli M A 2008 Appl. Phys. Lett. 92 152511

    [5]

    Zhao L, Lu P F, Yu Z Y, Guo X T, Shen Y, Ye H, Yuan G F, Zhang L 2010 J. Appl. Phys. 108 113924

    [6]

    Zou C W, Wang H J, Yi M L, Li M, Liu C S, Guo L P, Fu D J, Kang T W 2010 Appl. Surf. Sci. 256 2453

    [7]

    Qiu D J, Wang J, Ding K B, Shi H J, Jia Y 2008 Acta Phys. Sin. 57 5249 (in Chinese) [邱东江, 王俊, 丁扣宝, 施红军, 郏寅 2008 物理学报 57 5249]

    [8]

    Lu Z L, Yan G Q, Wang S, Zou W Q, Mo Z R, Lü L Y, Zhang F M, Du Y W, Xu M X, Xia Z H 2008 J. Appl. Phys. 104 033919

    [9]

    Yang Z, Liu J L, Biasini M, Beyermann W P 2008 Appl. Phys. Lett. 92 042111

    [10]

    Yan H L, Zhong X L, Wang J B, Huang G J, Ding S L, Zhou G C, Zhou Y C 2007 Appl. Phys. Lett. 90 082503

    [11]

    Xu Q Y, Schmidt H, Hartmann L, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2007 Appl. Phys. Lett. 91 092503

    [12]

    Wang Q, Sun Q, Jena P, Kawazoe K 2004 Phys. Rev. B 70 052408

    [13]

    Zou W Q, Lu Z L, Wang S, Liu Y, Lu L, Li L, Zhang F M, Dou Y W 2009 Acta Phys. Sin. 58 5763 (in Chinese) [邹文琴, 路忠林, 王申, 刘圆, 陆路, 郦莉, 张凤鸣, 都有为 2009 物理学报 58 5763]

    [14]

    Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L 2006 Appl. Phys. Lett. 88 242502

    [15]

    Peng L P, Fang L, Yang X F, Li Y J, Huang Q L, Wu F, Kong C Y 2009 J. Alloys Compd. 484 576

    [16]

    Samanta K, Bhattacharya P, Katiyar R S, Lwamoto W, Pagliuso P G, Rettori C 2006 Phys. Rev. B 73 245213

    [17]

    Asmar A R, Atanas J P, Ajaka M, Zaatar Y, Ferblantier G, Sauvajol J L, Jabbour J, Juillaget S, Foucaran A 2005 J. Cryst. Growth 279 399

    [18]

    Kaschner A, Haboeck U, Martin S, Matthias S, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner Z, Alves H R, Hofmann D M, Meyer B K 2002 Appl. Phys. Lett. 80 1909

    [19]

    Friedrich F, Gluba M A, Nickel N H 2009 Appl. Phys. Lett. 95 141903

    [20]

    Wang J B, Zhong H M, Li Z F, Liu W 2006 Appl. Phys. Lett. 88 101913

    [21]

    Bundesmann C, Ashkenov N, Shubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 Appl. Phys. Lett. 83 1974

    [22]

    Wang J B, Huang G J, Zhong X L, Sun L Z, Zhou T C, Liu E H 2006 Appl. Phys. Lett. 88 252502

    [23]

    Yadav H K, Sreenivas K, Katiyar R S, Gupta V 2007 J. Appl. D: Appl. Phys. 40 6005

    [24]

    Hu Y M, Wang C Y, Lee S S, Han T C, Chou W Y, Chen G J 2011 J. Raman Spectrosc. 42 434

    [25]

    He Q B, Xu J Y, Li X H, Kamzin A, Kamzina L 2007 Chin. Phys. Lett. 24 3500

    [26]

    Cong C J, Liao L, Liu Q Y, Li J C, Zhang K L 2006 Nanotechnology 17 1520

    [27]

    Tang K, Gu S L, Zhu S M, Liu J G, Chen H, Ye J D, Zhang R, Zheng Y D 2009 Appl. Phys. Lett. 95 192106

    [28]

    Yang H J, Zhao L Y, Zhang Y J, Wang Y X, Liu H L, Wei M B 2007 Solid State Commun. 143 566

  • [1] 丁芃, 刘发民, 杨新安, 李建奇. Co离子注入TiO2薄膜的显微结构和磁性研究. 物理学报, 2011, 60(3): 036803. doi: 10.7498/aps.60.036803
    [2] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响. 物理学报, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [3] 叶颖惠, 吕斌, 张维广, 黄宏文, 叶志镇. Mn-Na共掺ZnO非极性薄膜的结构及其光电磁性能研究. 物理学报, 2012, 61(3): 036701. doi: 10.7498/aps.61.036701
    [4] 胡良均, 陈涌海, 叶小玲, 王占国. Mn离子注入InAs/GaAs量子点结构材料的光电性质研究. 物理学报, 2007, 56(8): 4930-4935. doi: 10.7498/aps.56.4930
    [5] 郑玉龙, 甄聪棉, 马丽, 李秀玲, 潘成福, 侯登录. Si-Al2O3复合薄膜的室温铁磁性. 物理学报, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [6] 苏海桥, 陈猛, 李志杰, 袁兆林, 祖小涛, 付玉军, 薛书文. Ti离子注入和退火对ZnS薄膜结构和光学性质的影响. 物理学报, 2009, 58(10): 7108-7113. doi: 10.7498/aps.58.7108
    [7] 聂冬, 董闯;, 马腾才, 金星, 李晓娜, 张泽. 离子注入合成β-FeSi2薄膜的显微结构. 物理学报, 2002, 51(1): 115-124. doi: 10.7498/aps.51.115
    [8] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变. 物理学报, 2006, 55(3): 1453-1457. doi: 10.7498/aps.55.1453
    [9] 侯 娟, 郑毓峰, 董有忠, 匡代洪, 孙言飞, 李 强. Er3+注入CdTe薄膜的结构和光电性能研究. 物理学报, 2006, 55(12): 6684-6690. doi: 10.7498/aps.55.6684
    [10] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究. 物理学报, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [11] 王志光, 魏孔芳, 孙建荣, 缑洁, 盛彦斌, 臧航, 庞立龙, 姚存峰, 申铁龙, 马艺准, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [12] 河裾厚男, 陈志权. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [13] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒. 物理学报, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [14] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响. 物理学报, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [15] 付伟佳, 刘志文, 刘明, 牟宗信, 张庆瑜, 关庆丰, 陈康敏. 离子注入Zn的Si(001)基片热氧化制备纳米ZnO团簇及其生长行为研究. 物理学报, 2009, 58(8): 5693-5699. doi: 10.7498/aps.58.5693
    [16] 甄康, 顾然, 叶建东, 顾书林, 任芳芳, 朱顺明, 黄时敏, 汤琨, 唐东明, 杨燚, 张荣, 郑有炓. 离子注入对ZnTe:O中间带光伏材料的微观结构及光学特性的影响. 物理学报, 2014, 63(23): 237103. doi: 10.7498/aps.63.237103
    [17] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [18] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [19] 刘雪芹, 王印月, 甄聪棉, 张静, 杨映虎, 郭永平. 离子注入和固相外延制备Si1-x-yGexCy半导体薄膜. 物理学报, 2002, 51(10): 2340-2343. doi: 10.7498/aps.51.2340
    [20] 丁万昱, 王华林, 柴卫平, 巨东英. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2161
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-11
  • 修回日期:  2012-02-15
  • 刊出日期:  2012-08-05

退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响

  • 1. 重庆市光电功能材料重点实验室, 重庆 400047;
  • 2. 重庆大学物理学院, 重庆 400030
    基金项目: 

    重庆市自然科学基金(批准号: CSTC. 2011BA4031)资助的课题.

摘要: 采用射频磁控溅射法在石英玻璃衬底上制备了ZnO:Mn薄膜, 结合N+ 注入获得Mn-N共掺ZnO薄膜, 进而研究了退火温度对其结构及室温铁磁性的影响. 结果表明, 退火后ZnO:(Mn, N) 薄膜中Mn2+和N3-均处于ZnO晶格位, 没有杂质相生成. 退火温度的升高 有助于修复N+注入引起的晶格损伤, 同时也会让N逸出薄膜, 导致受主(NO)浓度降低. 室温铁磁性存在于ZnO:(Mn, N)薄膜中, 其强弱受NO浓度的影响, 铁磁性起源可采用束缚磁极化子模型进行解释.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回