搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子注入对ZnTe:O中间带光伏材料的微观结构及光学特性的影响

甄康 顾然 叶建东 顾书林 任芳芳 朱顺明 黄时敏 汤琨 唐东明 杨燚 张荣 郑有炓

离子注入对ZnTe:O中间带光伏材料的微观结构及光学特性的影响

甄康, 顾然, 叶建东, 顾书林, 任芳芳, 朱顺明, 黄时敏, 汤琨, 唐东明, 杨燚, 张荣, 郑有炓
PDF
导出引用
  • Ⅱ-VI和Ⅲ-V族高失配合金半导体是新型高效中间带太阳电池的优选材料体系, 但中间带的形成及其能带调控等关键问题仍未得到有效解决. 采用氧离子注入方式,在非平衡条件下对碲化锌(ZnTe)单晶材料实现了等电子掺杂, 深入研究了离子注入对ZnTe:O材料的微观结构和光学特性的影响. 研究表明: 注入合适浓度的氧离子(2.5×1018 cm-3)将会形成晶格应变, 并诱导1.80 eV (导带下0.45 eV)中间带的产生; 而较高浓度(2.5×1020 cm-3)的氧离子会导致ZnTe注入层表面非晶化, 并增强与锌空位相关的深能级(~1.6 eV)发光. 时间分辨光致发光结果显示, 离子注入诱导形成的中间带主要是和氧等电子陷阱束缚的局域激子发光有关, 载流子衰减寿命较长 (129 ps). 因此, 需要降低晶格紊乱度和合金无序, 实现电子局域态向扩展态的转变, 从而有效调控中间带能带结构.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB302003)、国家自然科学基金(批准号:61025020,60990312,61274058,61322403,61271077,11104130,11104134)、江苏省自然科学基金(批准号:BK2011437,BK2011556,BK20130013)、江苏省高等学校优势学科发展项目和澳大利亚研究基金会创新项目(批准号:DP1096918)资助的课题.
    [1]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5514

    [2]

    Luque A, Marti A, Stanley C 2012 Nat. Photon. 6 146

    [3]

    Luque A, Marti A 2011 Nat. Photon. 5 137

    [4]

    Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Haller E E, Miotkowski I, Seong M J, Alawadhi H, Eamdas A K 2000 Phys. Rev. Lett. 85 1552

    [5]

    Wu J, Walukiewicz W, Yu K M, Ager Ⅲ J W, Haller E E, Hong Y G, Xin H P, Tu C W 2002 Phys. Rev. B 65 241303

    [6]

    Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P 2003 Phys. Rev. Lett. 91 246403

    [7]

    Wang W M, Alvwer S L, varPhillips J D 2009 Appl. Phys. Lett. 95 011103

    [8]

    Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 107103

    [9]

    Wang W M, Alvwer S L, varPhillips J D, Metzger W K 2009 Appl. Phys. Lett. 95 261107

    [10]

    Seong M J, Miotkowski I, Ramdas A K 1998 Phys. Rev. B 58 7734

    [11]

    Hopfield J J, Thomas D G, Lynch R T 1966 Phys. Rev. Lett. 17 312

    [12]

    Felici M, Polimeni A, Capizzi M, Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T 2006 Appl. Phys. Lett. 88 101910

    [13]

    Moon S R, Kim J H, Kim Y 2012 J. Phys. Chem. C 116 10368

    [14]

    Tanaka T, Miyabara M, Nagao Y, Saito K, Guo Q, Nishio M, Yu K M, Walukiewicz W 2013 Appl. Phys. Lett. 102 052111

    [15]

    Cuthbert D, Thomas D G 1967 Phys. Rev. 154 763

    [16]

    Pak S W, Suh J Y, Lee D U, Kim E K 2012 Jpn. J. Appl. Phys. 51 01AD04

    [17]

    Merz J L 1971 J. Appl. Phys. 42 2463

    [18]

    Yu K M, Walukiewicz W, Wu J, Beeman J W, Ager Ⅲ J W, Haller E E, Miotkowski I, Ramdas A K, Becla P 2002 Appl. Phys. Lett. 80 1571

    [19]

    Pine A S, Dresselh G 1971 Phys. Rev. B 4 356

    [20]

    Zhang Q, Zhang J, Utama M, Peng B, Mata M, Arbiol J, Xiong Q H 2012 Phys. Rev. B 85 085418

    [21]

    Larramendi E M, Berth G, Wiedemeier V, Husch K P, Zrenner A, Woggon U, Tschumak E, Lischka K, Schikora D 2010 Semicond. Sci. Technol. 25 075003

    [22]

    Ye J D, Tripathy S, Ren F F, Sun X W, Lo G Q, Teo K L 2009 Appl. Phys. Lett. 94 011913

    [23]

    Schmidt R L, Mccombe B D, Cardona M 1975 Phys. Rev. B 11 746

    [24]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B 69 113303

    [25]

    Sato K, Adachi S 1993 J. Appl. Phys. 73 926

    [26]

    Yu Y M, Nam S G, Lee K S, Choi Y D, Byungsung O 2001 J. Appl. Phys. 90 807

    [27]

    Biao Y, Azoulay, George M A, Burger A, Collins W E, Silberman E, Su C H, Volz M E, Szofran F R, Gillies D C 1994 J. Cryst. Growth 138 219

    [28]

    Norris C B 1982 J. Appl. Phys. 53 5172

    [29]

    Norris C B 1980 J. Appl. Phys. 51 1998

    [30]

    Shigaura G, Ohashi M, Ichinohe Y, Kamamori M, Kimura Na, Kimura No, Sawada T, Suzuki K, Imai K 2007 J. Cryst. Growth 301–302 297

    [31]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [32]

    Carvalho A, Oberg S, Briddon P R 2011 Thin Solid Films 519 7468

    [33]

    Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D, Lischka K 2000 Appl. Phys. Lett. 76 2832

    [34]

    Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A, Bimberg D 2004 Appl. Phys. Lett. 85 1946

  • [1]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5514

    [2]

    Luque A, Marti A, Stanley C 2012 Nat. Photon. 6 146

    [3]

    Luque A, Marti A 2011 Nat. Photon. 5 137

    [4]

    Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Haller E E, Miotkowski I, Seong M J, Alawadhi H, Eamdas A K 2000 Phys. Rev. Lett. 85 1552

    [5]

    Wu J, Walukiewicz W, Yu K M, Ager Ⅲ J W, Haller E E, Hong Y G, Xin H P, Tu C W 2002 Phys. Rev. B 65 241303

    [6]

    Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P 2003 Phys. Rev. Lett. 91 246403

    [7]

    Wang W M, Alvwer S L, varPhillips J D 2009 Appl. Phys. Lett. 95 011103

    [8]

    Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 107103

    [9]

    Wang W M, Alvwer S L, varPhillips J D, Metzger W K 2009 Appl. Phys. Lett. 95 261107

    [10]

    Seong M J, Miotkowski I, Ramdas A K 1998 Phys. Rev. B 58 7734

    [11]

    Hopfield J J, Thomas D G, Lynch R T 1966 Phys. Rev. Lett. 17 312

    [12]

    Felici M, Polimeni A, Capizzi M, Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T 2006 Appl. Phys. Lett. 88 101910

    [13]

    Moon S R, Kim J H, Kim Y 2012 J. Phys. Chem. C 116 10368

    [14]

    Tanaka T, Miyabara M, Nagao Y, Saito K, Guo Q, Nishio M, Yu K M, Walukiewicz W 2013 Appl. Phys. Lett. 102 052111

    [15]

    Cuthbert D, Thomas D G 1967 Phys. Rev. 154 763

    [16]

    Pak S W, Suh J Y, Lee D U, Kim E K 2012 Jpn. J. Appl. Phys. 51 01AD04

    [17]

    Merz J L 1971 J. Appl. Phys. 42 2463

    [18]

    Yu K M, Walukiewicz W, Wu J, Beeman J W, Ager Ⅲ J W, Haller E E, Miotkowski I, Ramdas A K, Becla P 2002 Appl. Phys. Lett. 80 1571

    [19]

    Pine A S, Dresselh G 1971 Phys. Rev. B 4 356

    [20]

    Zhang Q, Zhang J, Utama M, Peng B, Mata M, Arbiol J, Xiong Q H 2012 Phys. Rev. B 85 085418

    [21]

    Larramendi E M, Berth G, Wiedemeier V, Husch K P, Zrenner A, Woggon U, Tschumak E, Lischka K, Schikora D 2010 Semicond. Sci. Technol. 25 075003

    [22]

    Ye J D, Tripathy S, Ren F F, Sun X W, Lo G Q, Teo K L 2009 Appl. Phys. Lett. 94 011913

    [23]

    Schmidt R L, Mccombe B D, Cardona M 1975 Phys. Rev. B 11 746

    [24]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B 69 113303

    [25]

    Sato K, Adachi S 1993 J. Appl. Phys. 73 926

    [26]

    Yu Y M, Nam S G, Lee K S, Choi Y D, Byungsung O 2001 J. Appl. Phys. 90 807

    [27]

    Biao Y, Azoulay, George M A, Burger A, Collins W E, Silberman E, Su C H, Volz M E, Szofran F R, Gillies D C 1994 J. Cryst. Growth 138 219

    [28]

    Norris C B 1982 J. Appl. Phys. 53 5172

    [29]

    Norris C B 1980 J. Appl. Phys. 51 1998

    [30]

    Shigaura G, Ohashi M, Ichinohe Y, Kamamori M, Kimura Na, Kimura No, Sawada T, Suzuki K, Imai K 2007 J. Cryst. Growth 301–302 297

    [31]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [32]

    Carvalho A, Oberg S, Briddon P R 2011 Thin Solid Films 519 7468

    [33]

    Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D, Lischka K 2000 Appl. Phys. Lett. 76 2832

    [34]

    Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A, Bimberg D 2004 Appl. Phys. Lett. 85 1946

  • [1] 钟红梅, 陈效双, 王金斌, 夏长生, 王少伟, 李志锋, 徐文兰, 陆 卫. 基于离子注入技术的ZnMnO半导体材料的制备及光谱表征. 物理学报, 2006, 55(4): 2073-2077. doi: 10.7498/aps.55.2073
    [2] 朱贺, 张兵坡, 王淼, 胡古今, 戴宁, 吴惠桢. 高剂量As离子注入对高阻Si电学特性的影响. 物理学报, 2014, 63(13): 136803. doi: 10.7498/aps.63.136803
    [3] 刘雪芹, 王印月, 甄聪棉, 张静, 杨映虎, 郭永平. 离子注入和固相外延制备Si1-x-yGexCy半导体薄膜. 物理学报, 2002, 51(10): 2340-2343. doi: 10.7498/aps.51.2340
    [4] 张小东, 李公平, 尤 伟, 张利民, 张 宇, 刘正民, 林德旭. 离子注入n型GaN光致发光谱中宽黄光发射带研究. 物理学报, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [5] 王引书, 李晋闽, 王玉田, 林兰英, 金运范. 不同剂量C离子注入Si单晶中Si1-xCx合金的形成及其特征. 物理学报, 2000, 49(11): 2210-2213. doi: 10.7498/aps.49.2210
    [6] 刘日平, 王秀英, 王文魁, 高明, 孙力玲, 张君. 注入Mo 在Zr57Nb5Cu15.4Ni12.6Al10非晶合金中的扩散. 物理学报, 2004, 53(1): 200-203. doi: 10.7498/aps.53.200
    [7] 王引书, 李晋闽, 王玉田, 孙国胜, 林兰英, 王衍斌. 预注入对Si1-xCx合金形成的影响. 物理学报, 2001, 50(7): 1329-1333. doi: 10.7498/aps.50.1329
    [8] 应丽贞, 赵新生, 张纪才, 戴伦, 秦国刚. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [9] 河裾厚男, 陈志权. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [10] 胡良均, 陈涌海, 叶小玲, 王占国. Mn离子注入InAs/GaAs量子点结构材料的光电性质研究. 物理学报, 2007, 56(8): 4930-4935. doi: 10.7498/aps.56.4930
    [11] 张崇宏, 杨义涛, 周丽宏, 李炳生. 铝镁尖晶石中He离子注入引起损伤的退火行为研究. 物理学报, 2008, 57(8): 5165-5169. doi: 10.7498/aps.57.5165
    [12] 张崇宏, 张丽卿, 杨义涛, 周丽宏, 李炳生. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [13] 苏海桥, 陈猛, 李志杰, 袁兆林, 祖小涛, 付玉军, 薛书文. Ti离子注入和退火对ZnS薄膜结构和光学性质的影响. 物理学报, 2009, 58(10): 7108-7113. doi: 10.7498/aps.58.7108
    [14] 张大成, 申艳艳, 黄元杰, 王卓, 刘昌龙. 绝缘体中金属离子注入合成纳米颗粒的理论研究. 物理学报, 2010, 59(11): 7974-7978. doi: 10.7498/aps.59.7974
    [15] 李斌成, 高卫东, 韩艳玲, 刘显明. 离子注入硅片快速退火后的红外椭偏光谱研究. 物理学报, 2010, 59(3): 1632-1637. doi: 10.7498/aps.59.1632
    [16] 秦希峰, 王凤翔, 梁毅, 付刚, 赵优美. 铒离子注入6H-SiC的横向离散研究. 物理学报, 2010, 59(9): 6390-6393. doi: 10.7498/aps.59.6390
    [17] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒. 物理学报, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [18] 秦希峰, 梁毅, 王凤翔, 李双, 付刚, 季艳菊. 铒离子注入碳化硅的射程和退火行为研究. 物理学报, 2011, 60(6): 066101. doi: 10.7498/aps.60.066101
    [19] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究. 物理学报, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [20] 秦希峰, 马桂杰, 时术华, 王凤翔, 付刚, 赵金花. 铒离子注入绝缘体上Si的射程分布研究. 物理学报, 2014, 63(17): 176101. doi: 10.7498/aps.63.176101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  836
  • PDF下载量:  683
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-28
  • 修回日期:  2014-07-24
  • 刊出日期:  2014-12-05

离子注入对ZnTe:O中间带光伏材料的微观结构及光学特性的影响

  • 1. 南京大学电子科学与工程学院, 南京 210093;
  • 2. Department of Electronic Materials Engineering, Research School of Physics and Engineering, the Australian National University, Canberra 2601, Australia
    基金项目: 

    国家重点基础研究发展计划(批准号:2011CB302003)、国家自然科学基金(批准号:61025020,60990312,61274058,61322403,61271077,11104130,11104134)、江苏省自然科学基金(批准号:BK2011437,BK2011556,BK20130013)、江苏省高等学校优势学科发展项目和澳大利亚研究基金会创新项目(批准号:DP1096918)资助的课题.

摘要: Ⅱ-VI和Ⅲ-V族高失配合金半导体是新型高效中间带太阳电池的优选材料体系, 但中间带的形成及其能带调控等关键问题仍未得到有效解决. 采用氧离子注入方式,在非平衡条件下对碲化锌(ZnTe)单晶材料实现了等电子掺杂, 深入研究了离子注入对ZnTe:O材料的微观结构和光学特性的影响. 研究表明: 注入合适浓度的氧离子(2.5×1018 cm-3)将会形成晶格应变, 并诱导1.80 eV (导带下0.45 eV)中间带的产生; 而较高浓度(2.5×1020 cm-3)的氧离子会导致ZnTe注入层表面非晶化, 并增强与锌空位相关的深能级(~1.6 eV)发光. 时间分辨光致发光结果显示, 离子注入诱导形成的中间带主要是和氧等电子陷阱束缚的局域激子发光有关, 载流子衰减寿命较长 (129 ps). 因此, 需要降低晶格紊乱度和合金无序, 实现电子局域态向扩展态的转变, 从而有效调控中间带能带结构.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回