搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应

谷卓 班士良

纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应

谷卓, 班士良
PDF
导出引用
导出核心图
  • 对于纤锌矿结构ZnO/MgxZn1-xO有限深单量子阱结构,考虑内建电场、导带弯曲及材料掺杂对实际异质结势的影响,利用有限差分法和自洽法数值求解Schrödinger方程和Poisson 方程,获得电子(空穴)的本征能级和本征波函数. 进而,采用费米黄金法则讨论带间光吸收的尺寸效应和三元混晶效应. 结果表明:三元混晶材料MgxZn1-xO中Mg组分的增加会增强垒层和阱层的内建电场强度,使得电子(空穴)平均位置靠近左(右)垒,导致带间跃迁吸收峰呈指数减小且发生蓝移;ZnO/MgxZn1-xO 量子阱带间跃迁吸收峰随阱宽增大而减小,吸收峰发生红移. 所得结果可为改善异质结构材料和器件的光电性能提供理论指导,以期获得实际应用所需的光学吸收频谱和波长.
    • 基金项目: 国家自然科学基金(批准号:61274098)资助的课题.
    [1]

    Kang H S, Kim G H, Lim S H, Chang H W, Kim J H, Lee S Y 2008 Thin Solid Films 516 3147

    [2]

    Shinde S S, Bhosale C H, Rajpure K Y 2012 Solid State Electron. 68 22

    [3]

    Janthong B, Moriya Y, Hongsingthong A, Sichanugrist P, Konagai M 2013 Sol. Energy Mater. Sol. Cells 119 209

    [4]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 物理学报 56 3479]

    [5]

    Zhong M, Sheng D, Li C L, Xu S Q, Wei X 2014 Sol. Energy Mater. Sol. Cells 121 22

    [6]

    Sonawane B K, Bhole M P, Patil D S 2009 Mater. Sci. Semicond. Process. 12 212

    [7]

    Qu Y, Ban S L 2010 Acta Phys. Sin. 59 4863 (in Chinese) [屈媛, 班士良 2010 物理学报 59 4863]

    [8]

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 物理学报 61 087201]

    [9]

    Ning G H, Zhao X P, Li J 2004 Opt. Mater. 27 1

    [10]

    Ding R, Xu C X, Gu B X, Shi Z L, Wang H T, Ba L, Xiao Z D 2010 J. Mater. Sci. Technol. 26 601

    [11]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [12]

    Liu W W, Yao B, Li B H, Li Y F, Zheng J, Zhang Z Z, Shan C X, Zhang J Y, Shen D Z, Fan X W 2010 Solid State Sci. 12 1567

    [13]

    Khan M A, Skogman R A, van Hove J M, Krishnankutty S, Kolbas R M 1990 Appl. Phys. Lett. 56 1257

    [14]

    Berland K, Stattin M, Farivar R, Sultan D M S, Hyldgaard P, Larsson A, Wang S M, Andersson T G 2010 Appl. Phys. Lett. 97 043507

    [15]

    Fan W J, Abiyasa A P, Tan S T, Yu S F, Sun X W, Xia J B, Yeo Y C, Li M F, Chong T C 2006 J. Cryst. Growth 287 28

    [16]

    Zhu J, Ban S L, Ha S H 2013 Superlattices Microstruct. 56 92

    [17]

    Yamamoto K, Tsuboi T, Ohashi T, Tawara T, Gotoh H, Nakamura A, Temmyo J 2010 J. Cryst. Growth 312 1703

    [18]

    Li J M, L Y W, Li D B, Han X X, Zhu Q S, Liu X L, Wang Z G 2004 J. Vac. Sci. Technol. B 22 2568

    [19]

    Zippel J, Heitsch S, Stölzel M, Mller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H, Grundmann M 2010 J. Lumin. 130 520

    [20]

    Koffyberg F P 1976 Phys. Rev. B 13 4470

    [21]

    Roessler D M, Walker W C 1967 Phys. Rev. 159 733

    [22]

    Davis J A, Dao L V, Wen X, Ticknor C, Hannaford P, Coleman V A, Tan H H, Jagadish C, Koike K, Sasa S, Inoue M, Yano M 2008 Nanotechnology 19 055205

    [23]

    Ha S H, Ban S L 2007 J. Inner Mongolia Univ. (Nat. Sci. Ed.) 38 272 (in Chinese) [哈斯花, 班士良 2007 内蒙古大学学报 (自然科学版) 38 272]

    [24]

    Chi Y M, Shi J J 2008 J. Lumin. 128 1836

    [25]

    Doyeol A, Park S H 2006 J. Semicond. Technol. Sci. 6 125

    [26]

    Zhang X, Li X M, Chen T L, Bian J M, Zhang C Y 2005 Thin Solid Films 492 248

    [27]

    Su S C, Lu Y M, Zhang Z Z, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Surf. Sci. 254 4886

    [28]

    Yuan J R, Li Y Q, Deng X H 2006 J. Nanchang Univ. (Eng. Technol. Ed.) 28 329 (in Chinese) [袁吉仁, 李要球, 邓新华 2006 南昌大学学报 (工科版) 28 329]

  • [1]

    Kang H S, Kim G H, Lim S H, Chang H W, Kim J H, Lee S Y 2008 Thin Solid Films 516 3147

    [2]

    Shinde S S, Bhosale C H, Rajpure K Y 2012 Solid State Electron. 68 22

    [3]

    Janthong B, Moriya Y, Hongsingthong A, Sichanugrist P, Konagai M 2013 Sol. Energy Mater. Sol. Cells 119 209

    [4]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 物理学报 56 3479]

    [5]

    Zhong M, Sheng D, Li C L, Xu S Q, Wei X 2014 Sol. Energy Mater. Sol. Cells 121 22

    [6]

    Sonawane B K, Bhole M P, Patil D S 2009 Mater. Sci. Semicond. Process. 12 212

    [7]

    Qu Y, Ban S L 2010 Acta Phys. Sin. 59 4863 (in Chinese) [屈媛, 班士良 2010 物理学报 59 4863]

    [8]

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 物理学报 61 087201]

    [9]

    Ning G H, Zhao X P, Li J 2004 Opt. Mater. 27 1

    [10]

    Ding R, Xu C X, Gu B X, Shi Z L, Wang H T, Ba L, Xiao Z D 2010 J. Mater. Sci. Technol. 26 601

    [11]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [12]

    Liu W W, Yao B, Li B H, Li Y F, Zheng J, Zhang Z Z, Shan C X, Zhang J Y, Shen D Z, Fan X W 2010 Solid State Sci. 12 1567

    [13]

    Khan M A, Skogman R A, van Hove J M, Krishnankutty S, Kolbas R M 1990 Appl. Phys. Lett. 56 1257

    [14]

    Berland K, Stattin M, Farivar R, Sultan D M S, Hyldgaard P, Larsson A, Wang S M, Andersson T G 2010 Appl. Phys. Lett. 97 043507

    [15]

    Fan W J, Abiyasa A P, Tan S T, Yu S F, Sun X W, Xia J B, Yeo Y C, Li M F, Chong T C 2006 J. Cryst. Growth 287 28

    [16]

    Zhu J, Ban S L, Ha S H 2013 Superlattices Microstruct. 56 92

    [17]

    Yamamoto K, Tsuboi T, Ohashi T, Tawara T, Gotoh H, Nakamura A, Temmyo J 2010 J. Cryst. Growth 312 1703

    [18]

    Li J M, L Y W, Li D B, Han X X, Zhu Q S, Liu X L, Wang Z G 2004 J. Vac. Sci. Technol. B 22 2568

    [19]

    Zippel J, Heitsch S, Stölzel M, Mller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H, Grundmann M 2010 J. Lumin. 130 520

    [20]

    Koffyberg F P 1976 Phys. Rev. B 13 4470

    [21]

    Roessler D M, Walker W C 1967 Phys. Rev. 159 733

    [22]

    Davis J A, Dao L V, Wen X, Ticknor C, Hannaford P, Coleman V A, Tan H H, Jagadish C, Koike K, Sasa S, Inoue M, Yano M 2008 Nanotechnology 19 055205

    [23]

    Ha S H, Ban S L 2007 J. Inner Mongolia Univ. (Nat. Sci. Ed.) 38 272 (in Chinese) [哈斯花, 班士良 2007 内蒙古大学学报 (自然科学版) 38 272]

    [24]

    Chi Y M, Shi J J 2008 J. Lumin. 128 1836

    [25]

    Doyeol A, Park S H 2006 J. Semicond. Technol. Sci. 6 125

    [26]

    Zhang X, Li X M, Chen T L, Bian J M, Zhang C Y 2005 Thin Solid Films 492 248

    [27]

    Su S C, Lu Y M, Zhang Z Z, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Surf. Sci. 254 4886

    [28]

    Yuan J R, Li Y Q, Deng X H 2006 J. Nanchang Univ. (Eng. Technol. Ed.) 28 329 (in Chinese) [袁吉仁, 李要球, 邓新华 2006 南昌大学学报 (工科版) 28 329]

  • [1] 周志东, 张颖, 张春祖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [2] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [3] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基MicroLED尺寸效应研究和驱动. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200305
    [4] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应. 物理学报, 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [5] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [6] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [7] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [8] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [9] 蔡元贞, 艾树涛. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
    [10] 周仕明, 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
    [11] 张波萍, 焦力实, 张 芸, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究. 物理学报, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [12] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [13] 杨福军, 班士良. 纤锌矿AlGaN/AlN/GaN异质结构中光学声子散射影响的电子迁移率. 物理学报, 2012, 61(8): 087201. doi: 10.7498/aps.61.087201
    [14] 屈媛, 班士良. 纤锌矿氮化物量子阱中光学声子模的三元混晶效应. 物理学报, 2010, 59(7): 4863-4873. doi: 10.7498/aps.59.4863
    [15] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [16] 曹 娟, 高晨阳, 徐 灿. 第一性原理研究一维SiO2纳米材料的结构和性质. 物理学报, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [17] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [18] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [19] 李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦. 低聚壳聚糖几何结构和物理化学属性的理论研究. 物理学报, 2014, 63(7): 076102. doi: 10.7498/aps.63.076102
    [20] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究. 物理学报, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  738
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-02-10
  • 刊出日期:  2014-05-20

纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应

  • 1. 内蒙古大学物理科学与技术学院, 呼和浩特 010021
    基金项目: 

    国家自然科学基金(批准号:61274098)资助的课题.

摘要: 对于纤锌矿结构ZnO/MgxZn1-xO有限深单量子阱结构,考虑内建电场、导带弯曲及材料掺杂对实际异质结势的影响,利用有限差分法和自洽法数值求解Schrödinger方程和Poisson 方程,获得电子(空穴)的本征能级和本征波函数. 进而,采用费米黄金法则讨论带间光吸收的尺寸效应和三元混晶效应. 结果表明:三元混晶材料MgxZn1-xO中Mg组分的增加会增强垒层和阱层的内建电场强度,使得电子(空穴)平均位置靠近左(右)垒,导致带间跃迁吸收峰呈指数减小且发生蓝移;ZnO/MgxZn1-xO 量子阱带间跃迁吸收峰随阱宽增大而减小,吸收峰发生红移. 所得结果可为改善异质结构材料和器件的光电性能提供理论指导,以期获得实际应用所需的光学吸收频谱和波长.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回