搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有加权顾前势的交通流模型

郑伟范 张继业 王明文 唐东明

具有加权顾前势的交通流模型

郑伟范, 张继业, 王明文, 唐东明
PDF
导出引用
导出核心图
  • 交通流随机行为的研究对于理解交通系统的内在演化规律具有重要作用. 基于元胞自动机模型和顾前势模型, 提出了一种考虑加权顾前势的交通流模型. 通过引入顾前势加权系数及对越靠近自身车辆的相互作用势赋予越大的权重, 使得建模过程更符合实际交通中司机根据前面车辆和环境情况进行随机决策的过程. 通过数值模拟, 再现了丰富的高密度交通行为. 仿真结果表明, 加权系数在高密度情况下作用明显, 更有利于在保持较高交通密度的同时, 具有较高的交通流量和道路通行能力.
    • 基金项目: 国家自然科学基金(批准号:11172247,61100118)和四川省科技支撑计划(批准号:2013GZX0166)资助的课题.
    [1]

    Gazis D C 2002 Operat. Res. 50 69

    [2]
    [3]

    Greenshields B N 1934 Proceedings of the 14th Annual Meeting of the Highway Research Board Washington D.C., December 6-7, 1934 Part I. p448

    [4]
    [5]

    Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science Press) pp289-296 (in Chinese) [贾斌, 高自友, 李克平, 李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京: 科学出版社) 第289296页]

    [6]

    Cremer M, Ludwig J 1986 Math. Comput. Simulat. 28 297

    [7]
    [8]

    Nagel K, Schreckenberg M 1992 J. Phys. I 2 2221

    [9]
    [10]
    [11]

    Benjamin S C, Johnson N F, Hui P M 1996 J. Phys. A: Math. Gen. 29 3119

    [12]

    Li X B, Wu Q S, Jiang R 2001 Phys. Rev. E 64 066128

    [13]
    [14]

    Barlovic R, Santen L, Schadschneider A, Schrechenberg M 1998 Eur. J. Phys. B 5 793

    [15]
    [16]

    Knospe W, Santen L, Schadschneider A, Schrechenberg M 2000 J. Phys. A 33 L477

    [17]
    [18]

    Knospe W, Santen L, Schadschneider A, Schrechenberg M 2002 Phys. Rev. E 65 056133

    [19]
    [20]

    Jiang R, Wu Q S 2003 J. Phys. A: Math. Gen. 36 381

    [21]
    [22]
    [23]

    Mou Y B, Zhong C W 2005 Acta Phys. Sin. 54 5597 (in Chinese) [牟勇飚, 钟诚文 2005 物理学报 54 5597]

    [24]
    [25]

    Ding J X, Huang H J, Tang T Q 2009 Acta Phys. Sin. 58 7591 (in Chinese) [丁建勋, 黄海军, 唐铁桥 2009 物理学报 58 7591]

    [26]
    [27]

    Bentaleb K, Jetto K, Ez-Zahraouy H, Benyoussef A 2013 Chin. Phys. B 22 018902

    [28]

    Xiang Z T, Xiong Li 2013 Chin. Phys. B 22 028901

    [29]
    [30]
    [31]

    Sopasakis A, Katsoulakis M A 2006 SIAM J. Appl. Math. 66 92

    [32]
    [33]

    Sopasakis A 2004 Physica A 342 741

    [34]
    [35]

    Alperovich T, Sopasakis A 2008 J. Statist. Phys. 133 1083

    [36]
    [37]

    Sopasakis A 2013 Procedia-Social and Behavioral Sciences 80 837

    [38]
    [39]

    Ni D 2011 Math. Aeterna, Hilaris Ltd. 12 7

    [40]
    [41]

    Ni D 2013 Appl. Math. Sci. 7 1929

    [42]
    [43]

    Ni D 2013 Appl. Math. Sci. 7 1947

    [44]
    [45]

    Ni D 2013 Appl. Math. Sci. 7 1965

    [46]
    [47]

    Hauck C, Sun Y, Timofeyev I 2012 arXiv:1209.5802 [math. PR]

    [48]
    [49]

    Vlachos D G, Katsoulakis M A 2000 Phys. Rev. Lett. 85 3898

    [50]

    Liggett T M 1985 Interact. Part. Syst. (Berlin: Springer) pp361-413

    [51]
    [52]
    [53]

    Lightill M J, Whitham G B 1995 Proc. Roy. Soc. A 229 317

  • [1]

    Gazis D C 2002 Operat. Res. 50 69

    [2]
    [3]

    Greenshields B N 1934 Proceedings of the 14th Annual Meeting of the Highway Research Board Washington D.C., December 6-7, 1934 Part I. p448

    [4]
    [5]

    Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science Press) pp289-296 (in Chinese) [贾斌, 高自友, 李克平, 李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京: 科学出版社) 第289296页]

    [6]

    Cremer M, Ludwig J 1986 Math. Comput. Simulat. 28 297

    [7]
    [8]

    Nagel K, Schreckenberg M 1992 J. Phys. I 2 2221

    [9]
    [10]
    [11]

    Benjamin S C, Johnson N F, Hui P M 1996 J. Phys. A: Math. Gen. 29 3119

    [12]

    Li X B, Wu Q S, Jiang R 2001 Phys. Rev. E 64 066128

    [13]
    [14]

    Barlovic R, Santen L, Schadschneider A, Schrechenberg M 1998 Eur. J. Phys. B 5 793

    [15]
    [16]

    Knospe W, Santen L, Schadschneider A, Schrechenberg M 2000 J. Phys. A 33 L477

    [17]
    [18]

    Knospe W, Santen L, Schadschneider A, Schrechenberg M 2002 Phys. Rev. E 65 056133

    [19]
    [20]

    Jiang R, Wu Q S 2003 J. Phys. A: Math. Gen. 36 381

    [21]
    [22]
    [23]

    Mou Y B, Zhong C W 2005 Acta Phys. Sin. 54 5597 (in Chinese) [牟勇飚, 钟诚文 2005 物理学报 54 5597]

    [24]
    [25]

    Ding J X, Huang H J, Tang T Q 2009 Acta Phys. Sin. 58 7591 (in Chinese) [丁建勋, 黄海军, 唐铁桥 2009 物理学报 58 7591]

    [26]
    [27]

    Bentaleb K, Jetto K, Ez-Zahraouy H, Benyoussef A 2013 Chin. Phys. B 22 018902

    [28]

    Xiang Z T, Xiong Li 2013 Chin. Phys. B 22 028901

    [29]
    [30]
    [31]

    Sopasakis A, Katsoulakis M A 2006 SIAM J. Appl. Math. 66 92

    [32]
    [33]

    Sopasakis A 2004 Physica A 342 741

    [34]
    [35]

    Alperovich T, Sopasakis A 2008 J. Statist. Phys. 133 1083

    [36]
    [37]

    Sopasakis A 2013 Procedia-Social and Behavioral Sciences 80 837

    [38]
    [39]

    Ni D 2011 Math. Aeterna, Hilaris Ltd. 12 7

    [40]
    [41]

    Ni D 2013 Appl. Math. Sci. 7 1929

    [42]
    [43]

    Ni D 2013 Appl. Math. Sci. 7 1947

    [44]
    [45]

    Ni D 2013 Appl. Math. Sci. 7 1965

    [46]
    [47]

    Hauck C, Sun Y, Timofeyev I 2012 arXiv:1209.5802 [math. PR]

    [48]
    [49]

    Vlachos D G, Katsoulakis M A 2000 Phys. Rev. Lett. 85 3898

    [50]

    Liggett T M 1985 Interact. Part. Syst. (Berlin: Springer) pp361-413

    [51]
    [52]
    [53]

    Lightill M J, Whitham G B 1995 Proc. Roy. Soc. A 229 317

  • [1] 陈燕红, 薛 郁. 随机延迟概率对交通流的影响. 物理学报, 2004, 53(12): 4145-4150. doi: 10.7498/aps.53.4145
    [2] 梁家源, 滕维中, 薛郁. 宏观交通流模型的能耗研究. 物理学报, 2013, 62(2): 024706. doi: 10.7498/aps.62.024706
    [3] 薛郁. 优化车流的交通流格子模型. 物理学报, 2004, 53(1): 25-30. doi: 10.7498/aps.53.25
    [4] 朱留华, 孔令江, 刘慕仁, 陈时东. 优先随机慢化及预测间距对交通流的影响. 物理学报, 2007, 56(5): 2517-2522. doi: 10.7498/aps.56.2517
    [5] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [6] 葛红霞, 戴世强, 祝会兵. 智能交通系统的元胞自动机交通流模型. 物理学报, 2005, 54(10): 4621-4626. doi: 10.7498/aps.54.4621
    [7] 胡斑比, 许伯铭, 汪秉宏, 王 雷. 高速车随机延迟逐步加速交通流元胞自动机模型. 物理学报, 2000, 49(10): 1926-1932. doi: 10.7498/aps.49.1926
    [8] 孔令江, 刘慕仁, 吕晓阳. 一维元胞自动机随机交通流模型的宏观方程分析. 物理学报, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [9] 薛 郁. 随机计及相对速度的交通流跟驰模型. 物理学报, 2003, 52(11): 2750-2756. doi: 10.7498/aps.52.2750
    [10] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [11] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [12] 雷 丽, 董力耘, 宋 涛, 戴世强. 基于元胞自动机模型的高架路交织区交通流的研究. 物理学报, 2006, 55(4): 1711-1717. doi: 10.7498/aps.55.1711
    [13] 郭四玲, 韦艳芳, 薛 郁. 元胞自动机交通流模型的相变特性研究. 物理学报, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [14] 田欢欢, 康三军, 梁玉娟, 薛郁. 元胞自动机混合交通流模型的能耗研究. 物理学报, 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [15] 康瑞, 彭莉娟, 杨凯. 考虑驾驶方式改变的一维元胞自动机交通流模型. 物理学报, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [16] 彭莉娟, 康瑞. 考虑驾驶员特性的一维元胞自动机交通流模型. 物理学报, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [17] 康三军, 薛郁, 温坚, 田欢欢. 混合交通流元胞自动机FI模型的能耗研究. 物理学报, 2010, 59(11): 7693-7700. doi: 10.7498/aps.59.7693
    [18] 彭光含. 两车道交通流耦合格子模型与数值仿真. 物理学报, 2010, 59(6): 3824-3830. doi: 10.7498/aps.59.3824
    [19] 孙棣华, 田川. 考虑驾驶员预估效应的交通流格子模型与数值仿真. 物理学报, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [20] 陈永, 张薇. 高速跟驰交通流动力学模型研究. 物理学报, 2020, 69(6): 064501. doi: 10.7498/aps.69.20191251
  • 引用本文:
    Citation:
计量
  • 文章访问数:  613
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-15
  • 修回日期:  2014-07-02
  • 刊出日期:  2014-11-20

具有加权顾前势的交通流模型

  • 1. 西南交通大学, 牵引动力国家重点实验室, 成都 610031;
  • 2. 西南交通大学数学学院, 成都 610031;
  • 3. 西南交通大学信息化研究院, 成都 610031
    基金项目: 

    国家自然科学基金(批准号:11172247,61100118)和四川省科技支撑计划(批准号:2013GZX0166)资助的课题.

摘要: 交通流随机行为的研究对于理解交通系统的内在演化规律具有重要作用. 基于元胞自动机模型和顾前势模型, 提出了一种考虑加权顾前势的交通流模型. 通过引入顾前势加权系数及对越靠近自身车辆的相互作用势赋予越大的权重, 使得建模过程更符合实际交通中司机根据前面车辆和环境情况进行随机决策的过程. 通过数值模拟, 再现了丰富的高密度交通行为. 仿真结果表明, 加权系数在高密度情况下作用明显, 更有利于在保持较高交通密度的同时, 具有较高的交通流量和道路通行能力.

English Abstract

参考文献 (53)

目录

    /

    返回文章
    返回