搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机物化学气相沉积生长GaN薄膜的室温热电特性研究

王保柱 张秀清 张奥迪 周晓然 Bahadir Kucukgok Na Lu 肖红领 王晓亮 Ian T. Ferguson

金属有机物化学气相沉积生长GaN薄膜的室温热电特性研究

王保柱, 张秀清, 张奥迪, 周晓然, Bahadir Kucukgok, Na Lu, 肖红领, 王晓亮, Ian T. Ferguson
PDF
导出引用
  • 采用金属有机物化学气相沉积技术生长了不同掺杂浓度的GaN薄膜, 并且通过霍尔效应测试和塞贝克效应测试, 表征了室温下GaN薄膜的载流子浓度、迁移率和塞贝克系数. 在实验测试的基础上, 计算了GaN薄膜的热电功率因子, 并且结合理论热导率确定了室温条件下GaN薄膜的热电优值(ZT). 研究结果表明: GaN薄膜的迁移率随着载流子浓度的增加而减小, 电导率随着载流子浓度的增加而增加; GaN 薄膜材料的塞贝克系数随载流子浓度的增加而降低, 其数量级在100–500 μV/K范围内; GaN薄膜材料在载流子浓度为1.60×1018 cm-3时, 热电功率因子出现极大值4.72×10-4 W/mK2; 由于Si杂质浓度的增加, 增强了GaN薄膜中的声子散射, 使得GaN薄膜的热导率随着载流子浓度的增加而降低. GaN薄膜的载流子浓度为1.60×1018 cm-3时, 室温ZT达到极大值0.0025.
    • 基金项目: 国家自然科学基金(批准号: 61076052)和河北省自然科学基金(批准号: F2013208171)资助的课题.
    [1]

    Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Wang S F, Chen S S, Chen J C, Yan G Y, Qiao X Q, Liu F Q, Wang J L, Ding X C, Fu G S 2012 Acta Phys. Sin. 61 066804 (in Chinese) [王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生 2012 物理学报 61 066804]

    [4]

    Lu N, Ferguson I 2013 Semi. Sci. Technol. 28 074023

    [5]

    Wu Z H, Xie H Q, Zeng Q F 2013 Acta Phys. Sin. 62 097301 (in Chinese) [吴子华, 谢华清, 曾庆峰 2013 物理学报 62 097301]

    [6]

    Wang B Z, Wang X L, Wang X Y, Guo L C, Wang X H, Xiao H L, Liu H X 2007 J. Phys. D: Appl. Phys. 40 765

    [7]

    Wang B Z, Wang X L, Hu G X, Ran J X, Wang X H, Guo L C, Xiao H L, Li J P, Zeng Y P, Li J M, Wang Z G 2006 Chin. Phys. Lett. 23 2187

    [8]

    Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014 Acta Phys. Sin. 63 207304 (in Chinese) [刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云 2014 物理学报 63 207304]

    [9]

    Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307

    [10]

    Sztein A, Ohta H, Sonoda J, Ramu A, Bowers J E, DenBaars S P, Nakamura S 2009 Appl. Phys. Express 2 111003

    [11]

    Wu W T, Wu K C, Ma Z J, Sa R J, Wei Y Q, Li Q H 2012 Chin. J. Struct. Chem. 31 1631

    [12]

    Sztein A, Haberstroh J, Bowers J E, DenBaars S P, Nakamura S 2013 J. Appl. Phys. 113 183707

    [13]

    Hurwitz E, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I 2011 J. Electron. Mater. 40 513

    [14]

    Zhang J, Kutlu S, Liu G Y, Tansu S 2011 J. Appl. Phys. 110 043710

    [15]

    Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S 2011 J. Appl. Phys. 110 123709

    [16]

    You J H, Lu J Q, Johnson H T 2006 J. Appl. Phys. 99 033706

    [17]

    Brandt M S, Herbst P, Angerer A, Ambacher O, Stutzmann M 1998 Phys. Rev. B 58 7786

    [18]

    Zou J, Kotchetkov D, Balandin A A, Florescu D I, Pollak F H 2002 J. Appl. Phys. 92 2534

  • [1]

    Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Wang S F, Chen S S, Chen J C, Yan G Y, Qiao X Q, Liu F Q, Wang J L, Ding X C, Fu G S 2012 Acta Phys. Sin. 61 066804 (in Chinese) [王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生 2012 物理学报 61 066804]

    [4]

    Lu N, Ferguson I 2013 Semi. Sci. Technol. 28 074023

    [5]

    Wu Z H, Xie H Q, Zeng Q F 2013 Acta Phys. Sin. 62 097301 (in Chinese) [吴子华, 谢华清, 曾庆峰 2013 物理学报 62 097301]

    [6]

    Wang B Z, Wang X L, Wang X Y, Guo L C, Wang X H, Xiao H L, Liu H X 2007 J. Phys. D: Appl. Phys. 40 765

    [7]

    Wang B Z, Wang X L, Hu G X, Ran J X, Wang X H, Guo L C, Xiao H L, Li J P, Zeng Y P, Li J M, Wang Z G 2006 Chin. Phys. Lett. 23 2187

    [8]

    Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014 Acta Phys. Sin. 63 207304 (in Chinese) [刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云 2014 物理学报 63 207304]

    [9]

    Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307

    [10]

    Sztein A, Ohta H, Sonoda J, Ramu A, Bowers J E, DenBaars S P, Nakamura S 2009 Appl. Phys. Express 2 111003

    [11]

    Wu W T, Wu K C, Ma Z J, Sa R J, Wei Y Q, Li Q H 2012 Chin. J. Struct. Chem. 31 1631

    [12]

    Sztein A, Haberstroh J, Bowers J E, DenBaars S P, Nakamura S 2013 J. Appl. Phys. 113 183707

    [13]

    Hurwitz E, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I 2011 J. Electron. Mater. 40 513

    [14]

    Zhang J, Kutlu S, Liu G Y, Tansu S 2011 J. Appl. Phys. 110 043710

    [15]

    Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S 2011 J. Appl. Phys. 110 123709

    [16]

    You J H, Lu J Q, Johnson H T 2006 J. Appl. Phys. 99 033706

    [17]

    Brandt M S, Herbst P, Angerer A, Ambacher O, Stutzmann M 1998 Phys. Rev. B 58 7786

    [18]

    Zou J, Kotchetkov D, Balandin A A, Florescu D I, Pollak F H 2002 J. Appl. Phys. 92 2534

  • [1] 冯玉春, 王文欣, 刘晓峰, 施 炜, 牛憨笨, 彭冬生. 一种外延生长高质量GaN薄膜的新方法. 物理学报, 2006, 55(7): 3606-3610. doi: 10.7498/aps.55.3606
    [2] 陈光德, 苑进社. 蓝宝石邻晶面衬底MBE生长GaN薄膜的瞬态光电导弛豫特性研究. 物理学报, 2007, 56(7): 4218-4223. doi: 10.7498/aps.56.4218
    [3] 徐卓, 陈光德, 苑进社, 齐鸣, 李爱珍. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [4] 李洪涛, 罗 毅, 席光义, 汪 莱, 江 洋, 赵 维, 韩彦军, 郝智彪, 孙长征. 基于X射线衍射的GaN薄膜厚度的精确测量. 物理学报, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [5] 赖天树, 范海华, 柳振东, 林位株. GaN的宽带黄光发射研究. 物理学报, 2003, 52(10): 2638-2641. doi: 10.7498/aps.52.2638
    [6] 赖天树, 林位株, 莫党. 非掺杂GaN的黄光发射模型确定. 物理学报, 2002, 51(5): 1149-1152. doi: 10.7498/aps.51.1149
    [7] 徐叙瑢, 宋淑芳, 陈维德, 许振嘉. 掺Er/Er+O的GaN薄膜光学性质的研究. 物理学报, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [8] 陈晓阳, 徐象繁, 胡荣星, 任 之, 许祝安, 曹光旱. LixNayCoO2的制备和热电性质. 物理学报, 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [9] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [10] 张进城, 郝跃, 李培咸, 范隆, 冯倩. 基于透射谱的GaN薄膜厚度测量. 物理学报, 2004, 53(4): 1243-1246. doi: 10.7498/aps.53.1243
    [11] 邢海英, 范广涵, 何 苗, 章 勇, 周天明, 赵德刚. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [12] 段俊丽, 郝立超. 表面电荷与体陷阱对GaN基HEMT器件热电子和量子效应的影响研究. 物理学报, 2010, 59(4): 2746-2752. doi: 10.7498/aps.59.2746
    [13] 徐叙瑢, 宋淑芳, 陈维德, 许振嘉. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [14] 潘孝军, 张振兴, 王 涛, 李 晖, 谢二庆. 溅射制备纳米晶GaN∶Er薄膜的室温发光特性. 物理学报, 2008, 57(6): 3786-3790. doi: 10.7498/aps.57.3786
    [15] 汤文辉, 刘邦武, 张柏诚, 李敏, 夏洋. 等离子增强原子层沉积低温生长GaN薄膜. 物理学报, 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [16] 陈敦军, 沈 波, 张开骁, 邓咏桢, 范 杰, 张 荣, 施 毅, 郑有炓. GaN1-xPx薄膜的结构特性研究. 物理学报, 2003, 52(7): 1788-1791. doi: 10.7498/aps.52.1788
    [17] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [18] 彭华, 王春雷, 李吉超, 王洪超, 王美晓. Mg2Si的电子结构和热电输运性质的理论研究. 物理学报, 2010, 59(6): 4123-4129. doi: 10.7498/aps.59.4123
    [19] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [20] 范平, 蔡兆坤, 郑壮豪, 张东平, 蔡兴民, 陈天宝. Bi-Sb-Te基热电薄膜温差电池离子束溅射制备与表征. 物理学报, 2011, 60(9): 098402. doi: 10.7498/aps.60.098402
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1194
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-17
  • 修回日期:  2014-10-31
  • 刊出日期:  2015-02-05

金属有机物化学气相沉积生长GaN薄膜的室温热电特性研究

  • 1. 河北科技大学信息科学与工程学院, 石家庄 050018;
  • 2. 北卡罗来纳大学夏洛特分校电子与计算机工程系, 夏洛特 28223;
  • 3. 北卡罗来纳大学夏洛特分校工程技术系, 夏洛特 28223;
  • 4. 中国科学院半导体研究所, 北京 100083
    基金项目: 

    国家自然科学基金(批准号: 61076052)和河北省自然科学基金(批准号: F2013208171)资助的课题.

摘要: 采用金属有机物化学气相沉积技术生长了不同掺杂浓度的GaN薄膜, 并且通过霍尔效应测试和塞贝克效应测试, 表征了室温下GaN薄膜的载流子浓度、迁移率和塞贝克系数. 在实验测试的基础上, 计算了GaN薄膜的热电功率因子, 并且结合理论热导率确定了室温条件下GaN薄膜的热电优值(ZT). 研究结果表明: GaN薄膜的迁移率随着载流子浓度的增加而减小, 电导率随着载流子浓度的增加而增加; GaN 薄膜材料的塞贝克系数随载流子浓度的增加而降低, 其数量级在100–500 μV/K范围内; GaN薄膜材料在载流子浓度为1.60×1018 cm-3时, 热电功率因子出现极大值4.72×10-4 W/mK2; 由于Si杂质浓度的增加, 增强了GaN薄膜中的声子散射, 使得GaN薄膜的热导率随着载流子浓度的增加而降低. GaN薄膜的载流子浓度为1.60×1018 cm-3时, 室温ZT达到极大值0.0025.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回