搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现

许雅明 王丽丹 段书凯

磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现

许雅明, 王丽丹, 段书凯
PDF
导出引用
导出核心图
  • 忆阻器作为混沌系统的非线性部分, 能够提高混沌系统的信号随机性和复杂度, 减小系统的物理尺寸. 本文将磁控二氧化钛忆阻器应用到一个新的三维自治混沌系统中, 通过理论推导和数值仿真, 从平衡点的稳定性、 Lyapunov指数谱、庞加莱截面和功率谱等方面研究了该系统的动力学特性, 并详细讨论了不同参数变化对系统相图和平衡点稳定性的影响. 有趣的是, 在改变参数的情况下, 系统的吸引子会产生翻转、混沌程度加剧和混叠的现象, 说明该忆阻混沌系统具有丰富的动力学行为. 此外, 本文将改进的牛顿迭代法运用于现场可编程逻辑门阵列 技术中, 巧妙设计出一种只迭代3次就能达到所需精度的开方运算器, 从而硬件实现了该忆阻混沌系统. 这突破了以往忆阻器混沌系统只能在计算机模拟平台仿真的瓶颈, 为进一步研究忆阻混沌系统及其在保密通信、信息处理中的应用提供了参考.
      通信作者: 王丽丹, ldwang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61372139, 61571372)、新世纪优秀人才支持计划(批准号: 教技函[2013]47号)和中央高校基本业务费专项资金 (批准号: XDJK2016A001, XDJK2014A009)资助的课题.
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Kavehei O, Iqbal A, Kim Y S, Eshraghian K, Al-Sarawi S F, Abbott D 2010 Proc. R. Soc. A 466 2175

    [5]

    Biolek Z, Biolek D, Biolkov V 2009 Radio. Eng. 18 210

    [6]

    Pershin Y V, Di V M 2008 Phys. Rev. B 78 3309

    [7]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [8]

    Yang J, Wang L D, Duan S K 2016 Sci. China Inf. Sci. 46 391

    [9]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2015 Neurocomputing 171 23

    [10]

    Wang L D, Duan M T, Duan S K, Hu X F 2014 Sci. China Inf. Sci. 44 920

    [11]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364

    [12]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [13]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [14]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907

    [15]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci. China Tech. Sci. 54 2180

    [16]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [17]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese) [闵国旗, 王丽丹, 段书凯 2015 物理学报 64 210507]

    [18]

    Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 7

    [19]

    Wang L D, Duan S K 2012 Abstr. Appl. Anal. 2012 2012

    [20]

    Li C L, Yu S M, Luo X S 2012 Acta Phys. Sin. 61 110502 (in Chinese) [李春来, 禹思敏, 罗晓曙 2012 物理学报 61 110502]

    [21]

    Wang G Y, Qiu S S, Li H W, Li C F, Zheng Y 2006 Chin. Phys. 15 2872

    [22]

    Wang Z L 2008 Comput. Eng. Appl. 44 84 (in Chinese) [王忠林 2008 计算机工程与应用 44 84]

    [23]

    Shao S Y, Min F H, Wu X H, Zhang X G 2014 Acta Phys. Sin. 63 060501 (in Chinese) [邵书义, 闵富红, 吴薛红, 张新国 2014 物理学报 63 060501]

    [24]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xi'an Electronic Sience and Technology University Press) pp126-148 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第126-148页]

    [25]

    Vaněčk A, Člikovsk S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice Hall International Ltd.) pp10-121

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Kavehei O, Iqbal A, Kim Y S, Eshraghian K, Al-Sarawi S F, Abbott D 2010 Proc. R. Soc. A 466 2175

    [5]

    Biolek Z, Biolek D, Biolkov V 2009 Radio. Eng. 18 210

    [6]

    Pershin Y V, Di V M 2008 Phys. Rev. B 78 3309

    [7]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [8]

    Yang J, Wang L D, Duan S K 2016 Sci. China Inf. Sci. 46 391

    [9]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2015 Neurocomputing 171 23

    [10]

    Wang L D, Duan M T, Duan S K, Hu X F 2014 Sci. China Inf. Sci. 44 920

    [11]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364

    [12]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [13]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [14]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907

    [15]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci. China Tech. Sci. 54 2180

    [16]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [17]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese) [闵国旗, 王丽丹, 段书凯 2015 物理学报 64 210507]

    [18]

    Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 7

    [19]

    Wang L D, Duan S K 2012 Abstr. Appl. Anal. 2012 2012

    [20]

    Li C L, Yu S M, Luo X S 2012 Acta Phys. Sin. 61 110502 (in Chinese) [李春来, 禹思敏, 罗晓曙 2012 物理学报 61 110502]

    [21]

    Wang G Y, Qiu S S, Li H W, Li C F, Zheng Y 2006 Chin. Phys. 15 2872

    [22]

    Wang Z L 2008 Comput. Eng. Appl. 44 84 (in Chinese) [王忠林 2008 计算机工程与应用 44 84]

    [23]

    Shao S Y, Min F H, Wu X H, Zhang X G 2014 Acta Phys. Sin. 63 060501 (in Chinese) [邵书义, 闵富红, 吴薛红, 张新国 2014 物理学报 63 060501]

    [24]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xi'an Electronic Sience and Technology University Press) pp126-148 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第126-148页]

    [25]

    Vaněčk A, Člikovsk S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice Hall International Ltd.) pp10-121

  • [1] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [2] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [3] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [4] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [5] 刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明. 脉冲强磁场下的电极化测量系统. 物理学报, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [6] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [7] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [8] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [9] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [10] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [11] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [12] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [13] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [14] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [15] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [16] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [17] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
  • 引用本文:
    Citation:
计量
  • 文章访问数:  668
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-17
  • 修回日期:  2016-04-01
  • 刊出日期:  2016-06-20

磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现

  • 1. 西南大学电子信息工程学院, 重庆 400715
  • 通信作者: 王丽丹, ldwang@swu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61372139, 61571372)、新世纪优秀人才支持计划(批准号: 教技函[2013]47号)和中央高校基本业务费专项资金 (批准号: XDJK2016A001, XDJK2014A009)资助的课题.

摘要: 忆阻器作为混沌系统的非线性部分, 能够提高混沌系统的信号随机性和复杂度, 减小系统的物理尺寸. 本文将磁控二氧化钛忆阻器应用到一个新的三维自治混沌系统中, 通过理论推导和数值仿真, 从平衡点的稳定性、 Lyapunov指数谱、庞加莱截面和功率谱等方面研究了该系统的动力学特性, 并详细讨论了不同参数变化对系统相图和平衡点稳定性的影响. 有趣的是, 在改变参数的情况下, 系统的吸引子会产生翻转、混沌程度加剧和混叠的现象, 说明该忆阻混沌系统具有丰富的动力学行为. 此外, 本文将改进的牛顿迭代法运用于现场可编程逻辑门阵列 技术中, 巧妙设计出一种只迭代3次就能达到所需精度的开方运算器, 从而硬件实现了该忆阻混沌系统. 这突破了以往忆阻器混沌系统只能在计算机模拟平台仿真的瓶颈, 为进一步研究忆阻混沌系统及其在保密通信、信息处理中的应用提供了参考.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回