搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈镁交替掺杂Ba0.6Sr0.4TiO3薄膜高调谐性能

胡一明 廖家轩 杨函于 王思哲 吴孟强 徐自强 冯婷婷 巩峰

铈镁交替掺杂Ba0.6Sr0.4TiO3薄膜高调谐性能

胡一明, 廖家轩, 杨函于, 王思哲, 吴孟强, 徐自强, 冯婷婷, 巩峰
PDF
导出引用
导出核心图
  • 根据Ce掺杂、Mg掺杂以及Y和Mn交替掺杂可分别使Ba0.6Sr0.4TiO3 (BST)薄膜的介电调谐率、介电损耗和综合介电性能提高、降低和提高的特点, 采用改进的溶胶- 凝胶(sol-gel)法制备了6层Ce和Mg交替掺杂BST薄膜, 并研究其结构及介电性能. X射线衍射表明, 该薄膜为立方钙钛矿结构、主要沿(110)晶面生长、晶化明显增强. 扫描电子显微镜表明, 薄膜表面形貌极大改善, 首层薄膜与基体良好匹配, Ce掺杂层为首层的交替掺杂薄膜表面更均匀致密、晶粒更细小、晶化略微减弱. X射线光电子能谱表明, 薄膜表面非钙钛矿结构显著减少. 薄膜显示高调谐率和高优质因子. Mg掺杂层为首层的交替掺杂薄膜在高频范围的综合介电性能更稳定. Ce 掺杂层为首层的交替掺杂薄膜在低频范围的介电强度更高, 综合性能更突出, 在100 kHz 下, 10, 20和40 V偏压对应的调谐率分别为47.4%, 63.6% 和71.8%, 对应的优质因子分别为27.1, 77.5和86.5, 可满足微波调谐应用. 同时, 就有关机理进行了分析.
      通信作者: 廖家轩, jxliao@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51172034,61101030)和四川省科技计划(批准号:2015GZ0047,2015GZ0130)资助的课题.
    [1]

    Padminni P, Taylor T R, Lefevre M J, Nagra A S, York R A, Speck J S 1999 Appl. Phys. Lett. 75 3186

    [2]

    Pervez N K, Hansen P J, York R A 2004 Appl. Phys. Lett. 85 4451

    [3]

    Zou C, Xu Z M, Ma Z C, Wu X H, Peng J 2015 Acta Phys. Sin. 64 118101 (in Chinese) [邹超, 徐智谋, 马智超, 武兴会, 彭静 2015 物理学报 64 118101]

    [4]

    Cole M W, Nothwang W D, Hubbard C, Ngo E, Ervin M 2003 J. Appl. Phys. 93 9218

    [5]

    Cole M W, Joshi P C, Ervin M H 2001 J. Appl. Phys. 89 6336

    [6]

    Wang S Y, Cheng B L, Wang C, Dai S Y, Jin K J, Zhou Y L, Lu H B, Chen Z H, Yang G Z 2006 J. Appl. Phys. 99 013504

    [7]

    Liao J X, Pan X F, Wang H Q, Zhang J, Fu X J, Tian Z 2009 Rare Metal Mat. Eng. 38 1987

    [8]

    Chang W, Sengupta L 2002 J. Appl. Phys. 92 3941

    [9]

    Cole M W, Joshi P C, Ervin M H, Wooda M C, Pfeffer R L 2000 Thin Solid Films 374 34

    [10]

    Liao J X, Xu Z Q, Wei X B, Wei X B, Wang P, Yang B C 2012 Surf. Coat. Tech. 206 4518

    [11]

    Wang B, Liao J X, Zhang B, Xu C Y 2013 Rare Metal Mat. Eng. 42 96 (in Chinese) [王滨, 廖家轩, 张宝, 徐从玉 2013 稀有金属材料与工程 42 96]

    [12]

    Zhou Q G, Zhai J W, Yao X 2007 J. Inorg. Mater. 22 519 (in Chinese) [周歧刚, 翟继卫, 姚熹 2007 无机材料学报 22 519]

    [13]

    Liao J X, Wei X B, Xu Z Q, Wei X B, Wang P 2012 Mater. Chem. Phys. 135 1030

    [14]

    Huang J Q, Liao J X, Wang P, Zhang W F, Wei X B, Xu Z Q 2014 Surf. Coat. Tech. 251 307

    [15]

    Huang J Q, Liao J X, Zhang W F, Wang S Z, Yang H Y, Wu M Q 2015 Integr. Ferroelectr. 162 94

    [16]

    Liao J X, Zhang W F, Huang J Q, Wang P, Yang H Y, Wang S Z, Wu M Q 2015 Integr. Ferroelectr. 164 74

    [17]

    Bao J B, Ren T L, Liu J S, Liu L T, Li Z J, Li X J 2002 PiezoElectr. Acoustoopt 24 389

    [18]

    Ahn K H, Baik S, Kim S S 2002 J. Appl. Phys. 92 2651

    [19]

    Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033

    [20]

    Yu J, Liao J X, Jin L, Wei X B, Wang P, Wei X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健, 廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强 2011 物理学报 60 077701]

    [21]

    Peng L S, Xi X X, Moeckly B H, Alpay S P 2003 Appl. Phys. Lett. 83 4592

    [22]

    Craciun V, Singh R K 2000 Appl. Phys. Lett. 76 1932

    [23]

    Liao J X, Wei X B, Xu Z Q, Wang P 2014 Vacuum 107 291

    [24]

    Kim K T, Kim C I 2003 Microelectron. Eng. 66 835

    [25]

    Kim K T, Kim C I 2005 Thin Solid Films 472 26

    [26]

    Wang S Y, Cheng B L, Wang C, Redfern S A T, Dai S Y, Jin K J, Lu H B, Zhou Y L, Chen Z H, Yang G Z 2005 J. Phys. D: Appl. Phys. 38 2253

    [27]

    Cole M W, Hubbard C, Ngo E, Ervin M, Wood M 2002 J. Appl. Phys. 92 475

    [28]

    Wu Q C, Wang H P, Tian Q, Liao H C 2007 Proceedings of the 6th Conference on Functional Materials and Applications in China Wuhan, China, November 15-19, 2007 p693 (in Chinese) [吴其昌, 王慧萍, 田琼, 廖恒成 2007 第六届中国功能材料及其应用学术会议论文集 武汉, 中国, 11月15日-11月19日, 2007 p693]

  • [1]

    Padminni P, Taylor T R, Lefevre M J, Nagra A S, York R A, Speck J S 1999 Appl. Phys. Lett. 75 3186

    [2]

    Pervez N K, Hansen P J, York R A 2004 Appl. Phys. Lett. 85 4451

    [3]

    Zou C, Xu Z M, Ma Z C, Wu X H, Peng J 2015 Acta Phys. Sin. 64 118101 (in Chinese) [邹超, 徐智谋, 马智超, 武兴会, 彭静 2015 物理学报 64 118101]

    [4]

    Cole M W, Nothwang W D, Hubbard C, Ngo E, Ervin M 2003 J. Appl. Phys. 93 9218

    [5]

    Cole M W, Joshi P C, Ervin M H 2001 J. Appl. Phys. 89 6336

    [6]

    Wang S Y, Cheng B L, Wang C, Dai S Y, Jin K J, Zhou Y L, Lu H B, Chen Z H, Yang G Z 2006 J. Appl. Phys. 99 013504

    [7]

    Liao J X, Pan X F, Wang H Q, Zhang J, Fu X J, Tian Z 2009 Rare Metal Mat. Eng. 38 1987

    [8]

    Chang W, Sengupta L 2002 J. Appl. Phys. 92 3941

    [9]

    Cole M W, Joshi P C, Ervin M H, Wooda M C, Pfeffer R L 2000 Thin Solid Films 374 34

    [10]

    Liao J X, Xu Z Q, Wei X B, Wei X B, Wang P, Yang B C 2012 Surf. Coat. Tech. 206 4518

    [11]

    Wang B, Liao J X, Zhang B, Xu C Y 2013 Rare Metal Mat. Eng. 42 96 (in Chinese) [王滨, 廖家轩, 张宝, 徐从玉 2013 稀有金属材料与工程 42 96]

    [12]

    Zhou Q G, Zhai J W, Yao X 2007 J. Inorg. Mater. 22 519 (in Chinese) [周歧刚, 翟继卫, 姚熹 2007 无机材料学报 22 519]

    [13]

    Liao J X, Wei X B, Xu Z Q, Wei X B, Wang P 2012 Mater. Chem. Phys. 135 1030

    [14]

    Huang J Q, Liao J X, Wang P, Zhang W F, Wei X B, Xu Z Q 2014 Surf. Coat. Tech. 251 307

    [15]

    Huang J Q, Liao J X, Zhang W F, Wang S Z, Yang H Y, Wu M Q 2015 Integr. Ferroelectr. 162 94

    [16]

    Liao J X, Zhang W F, Huang J Q, Wang P, Yang H Y, Wang S Z, Wu M Q 2015 Integr. Ferroelectr. 164 74

    [17]

    Bao J B, Ren T L, Liu J S, Liu L T, Li Z J, Li X J 2002 PiezoElectr. Acoustoopt 24 389

    [18]

    Ahn K H, Baik S, Kim S S 2002 J. Appl. Phys. 92 2651

    [19]

    Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033

    [20]

    Yu J, Liao J X, Jin L, Wei X B, Wang P, Wei X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健, 廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强 2011 物理学报 60 077701]

    [21]

    Peng L S, Xi X X, Moeckly B H, Alpay S P 2003 Appl. Phys. Lett. 83 4592

    [22]

    Craciun V, Singh R K 2000 Appl. Phys. Lett. 76 1932

    [23]

    Liao J X, Wei X B, Xu Z Q, Wang P 2014 Vacuum 107 291

    [24]

    Kim K T, Kim C I 2003 Microelectron. Eng. 66 835

    [25]

    Kim K T, Kim C I 2005 Thin Solid Films 472 26

    [26]

    Wang S Y, Cheng B L, Wang C, Redfern S A T, Dai S Y, Jin K J, Lu H B, Zhou Y L, Chen Z H, Yang G Z 2005 J. Phys. D: Appl. Phys. 38 2253

    [27]

    Cole M W, Hubbard C, Ngo E, Ervin M, Wood M 2002 J. Appl. Phys. 92 475

    [28]

    Wu Q C, Wang H P, Tian Q, Liao H C 2007 Proceedings of the 6th Conference on Functional Materials and Applications in China Wuhan, China, November 15-19, 2007 p693 (in Chinese) [吴其昌, 王慧萍, 田琼, 廖恒成 2007 第六届中国功能材料及其应用学术会议论文集 武汉, 中国, 11月15日-11月19日, 2007 p693]

  • [1] 俞健, 廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强. 高调谐BST薄膜制备及介电性能研究. 物理学报, 2011, 60(7): 077701. doi: 10.7498/aps.60.077701
    [2] 翟继卫, 姚 熹, 周歧刚. 杂质分布设计对钛酸锶钡薄膜结构和性能的影响. 物理学报, 2007, 56(11): 6666-6673. doi: 10.7498/aps.56.6666
    [3] 赵强, 文岐业, 戴雨涵, 张继华, 陈宏伟, 杨传仁, 张万里. 基于钛酸锶钡介电非线性效应的可调谐太赫兹人工电磁媒质. 物理学报, 2013, 62(4): 044104. doi: 10.7498/aps.62.044104
    [4] 惠荣, 朱骏, 卢网平, 毛翔宇, 羌锋, 陈小兵. La掺杂诱发层状钙钛矿型铁电体弛豫性相变的介电研究. 物理学报, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [5] 梁荣庆, 卫永霞, 钱晓梅, 俞笑竹, 叶 超, 宁兆元. O2掺杂对SiCOH低k薄膜结构与电学性能的影响. 物理学报, 2007, 56(2): 1172-1176. doi: 10.7498/aps.56.1172
    [6] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [7] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [8] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [9] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响. 物理学报, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [10] 朱珺钏, 金灿, 陈小兵, 单丹. B位等价掺杂SrBi4Ti4O15铁电材料的性能研究. 物理学报, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [11] 叶 超, 宁兆元, 辛 煜, 王婷婷, 俞笑竹. Si—OH基团对SiCOH低k薄膜性能的影响与控制. 物理学报, 2006, 55(5): 2606-2612. doi: 10.7498/aps.55.2606
    [12] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究. 物理学报, 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [13] 王根水, 诸君浩, 李淑红, 陆兴泽, 王文澄, 马世红, 严 媚. 有序组装超薄膜热释电性能的优化研究. 物理学报, 2003, 52(1): 197-201. doi: 10.7498/aps.52.197
    [14] 赵学童, 廖瑞金, 李建英, 王飞鹏. 直流老化对CaCu3Ti4O12陶瓷介电性能的影响. 物理学报, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [15] 曾 涛, 董显林, 毛朝梁, 梁瑞虹, 杨 洪. 孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究. 物理学报, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [16] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [17] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生. (K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究. 物理学报, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [19] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [20] 马建华, 孙璟兰, 孟祥建, 林 铁, 石富文, 褚君浩. SrTiO3金属-绝缘体-半导体结构的介电与界面特性. 物理学报, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
  • 引用本文:
    Citation:
计量
  • 文章访问数:  555
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-28
  • 修回日期:  2016-05-05
  • 刊出日期:  2016-07-20

铈镁交替掺杂Ba0.6Sr0.4TiO3薄膜高调谐性能

  • 1. 电子科技大学能源科学与工程学院, 成都 611731
  • 通信作者: 廖家轩, jxliao@uestc.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51172034,61101030)和四川省科技计划(批准号:2015GZ0047,2015GZ0130)资助的课题.

摘要: 根据Ce掺杂、Mg掺杂以及Y和Mn交替掺杂可分别使Ba0.6Sr0.4TiO3 (BST)薄膜的介电调谐率、介电损耗和综合介电性能提高、降低和提高的特点, 采用改进的溶胶- 凝胶(sol-gel)法制备了6层Ce和Mg交替掺杂BST薄膜, 并研究其结构及介电性能. X射线衍射表明, 该薄膜为立方钙钛矿结构、主要沿(110)晶面生长、晶化明显增强. 扫描电子显微镜表明, 薄膜表面形貌极大改善, 首层薄膜与基体良好匹配, Ce掺杂层为首层的交替掺杂薄膜表面更均匀致密、晶粒更细小、晶化略微减弱. X射线光电子能谱表明, 薄膜表面非钙钛矿结构显著减少. 薄膜显示高调谐率和高优质因子. Mg掺杂层为首层的交替掺杂薄膜在高频范围的综合介电性能更稳定. Ce 掺杂层为首层的交替掺杂薄膜在低频范围的介电强度更高, 综合性能更突出, 在100 kHz 下, 10, 20和40 V偏压对应的调谐率分别为47.4%, 63.6% 和71.8%, 对应的优质因子分别为27.1, 77.5和86.5, 可满足微波调谐应用. 同时, 就有关机理进行了分析.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回