搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中性和阳离子丁酮团簇的结构及稳定性的理论研究

杨雪 丁大军 胡湛 赵国明

中性和阳离子丁酮团簇的结构及稳定性的理论研究

杨雪, 丁大军, 胡湛, 赵国明
PDF
导出引用
导出核心图
  • 使用密度泛函B3LYP方法,在6-31G*和6-311+G**基组水平上计算中性和阳离子丁酮团簇(CH3COC2H5)n和(CH3COC2H5)n+(n 7)的稳定结构,并比较不同尺寸团簇之间的相对稳定性.中性和阳离子丁酮团簇的结构具有相似性:n=37时,组成团簇的丁酮的平均几何参数基本相同,单环结构最稳定;随着团簇尺寸的增加,双环结构的稳定性逐渐上升.通过平均结合能、一阶差分能、HOMO-LUMO能隙等计算分析可知:在所研究的各种尺寸团簇中,(CH3COC2H5)3是最稳定的中性团簇,与实验中的最强峰对应;(CH3COC2H5)4+是最稳定的阳离子团簇.通过电离能计算得到丁酮分子的垂直电离能为9.535 eV与实验值相符,同时证明中性和阳离子丁酮二元团簇的结构变化较大.研究结果为实验中丁酮团簇碎片离子的形成机理提供一定的理论依据,并且为进一步研究酮类分子团簇的生长规律提供有价值的信息.
      通信作者: 杨雪, yangxue11791539@163.com
    • 基金项目: 国家自然科学基金(批准号:11447194)和吉林省教育厅十三五科学技术项目(批准号:JJKH20170215KJ)资助的课题.
    [1]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601

    [2]

    Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 物理学报 64 163601]

    [3]

    Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502

    [4]

    Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306

    [5]

    Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480

    [6]

    Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530

    [7]

    Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]

    [8]

    Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774

    [9]

    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525

    [10]

    Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132

    [11]

    Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945

    [12]

    Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190

    [14]

    Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155

    [15]

    Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 物理学报 61 093103]

    [16]

    Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227

    [17]

    Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]

    [18]

    Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275

    [19]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508

    [20]

    Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]

    [21]

    Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]

    [22]

    Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]

    [23]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [24]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [25]

    Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189

    [26]

    Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958

    [27]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)

    [28]

    Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117

    [29]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [30]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [31]

    Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427

    [32]

    Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328

    [33]

    Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505

  • [1]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601

    [2]

    Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 物理学报 64 163601]

    [3]

    Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502

    [4]

    Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306

    [5]

    Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480

    [6]

    Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530

    [7]

    Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]

    [8]

    Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774

    [9]

    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525

    [10]

    Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132

    [11]

    Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945

    [12]

    Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190

    [14]

    Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155

    [15]

    Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 物理学报 61 093103]

    [16]

    Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227

    [17]

    Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]

    [18]

    Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275

    [19]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508

    [20]

    Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]

    [21]

    Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]

    [22]

    Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]

    [23]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [24]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [25]

    Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189

    [26]

    Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958

    [27]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)

    [28]

    Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117

    [29]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [30]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [31]

    Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427

    [32]

    Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328

    [33]

    Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505

  • [1] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [2] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [3] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [4] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [5] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [6] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [7] 尹玉明, 赵伶玲. 离子浓度及表面结构对岩石孔隙内水流动特性的影响. 物理学报, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [8] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [9] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [10] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191942
    [11] 杨永霞, 李玉叶, 古华光. Pre-Bötzinger复合体的从簇到峰放电的同步转迁及分岔机制. 物理学报, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [12] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [13] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [14] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [15] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [16] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [17] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
  • 引用本文:
    Citation:
计量
  • 文章访问数:  189
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-18
  • 修回日期:  2017-11-13
  • 刊出日期:  2018-02-05

中性和阳离子丁酮团簇的结构及稳定性的理论研究

  • 1. 吉林化工学院理学院, 吉林 132022;
  • 2. 吉林大学原子与分子物理研究所, 长春 130012
  • 通信作者: 杨雪, yangxue11791539@163.com
    基金项目: 

    国家自然科学基金(批准号:11447194)和吉林省教育厅十三五科学技术项目(批准号:JJKH20170215KJ)资助的课题.

摘要: 使用密度泛函B3LYP方法,在6-31G*和6-311+G**基组水平上计算中性和阳离子丁酮团簇(CH3COC2H5)n和(CH3COC2H5)n+(n 7)的稳定结构,并比较不同尺寸团簇之间的相对稳定性.中性和阳离子丁酮团簇的结构具有相似性:n=37时,组成团簇的丁酮的平均几何参数基本相同,单环结构最稳定;随着团簇尺寸的增加,双环结构的稳定性逐渐上升.通过平均结合能、一阶差分能、HOMO-LUMO能隙等计算分析可知:在所研究的各种尺寸团簇中,(CH3COC2H5)3是最稳定的中性团簇,与实验中的最强峰对应;(CH3COC2H5)4+是最稳定的阳离子团簇.通过电离能计算得到丁酮分子的垂直电离能为9.535 eV与实验值相符,同时证明中性和阳离子丁酮二元团簇的结构变化较大.研究结果为实验中丁酮团簇碎片离子的形成机理提供一定的理论依据,并且为进一步研究酮类分子团簇的生长规律提供有价值的信息.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回