搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁感应下分数阶神经网络动力学行为分析及应用

丁大为 王谋媛 王金 杨宗立 牛炎 王威

引用本文:
Citation:

电磁感应下分数阶神经网络动力学行为分析及应用

丁大为, 王谋媛, 王金, 杨宗立, 牛炎, 王威

Dynamic behaviors analysis of fraction-order neural network under memristive electromagnetic induction

Dawei Ding, Mouyuan Wang, Jin Wang, Zongli Yang, Yan Niu, Wei Wang
PDF
导出引用
  • 忆阻器可以用来模拟生物神经突触和描述电磁感应效应。为了探索电磁感应作用下异构神经网络的动力学行为,本文首先使用双局部有源忆阻器耦合一个Hindmarsh-Rose(HR)和两个FitzHugh-Nagumo(FN)神经元,构成忆阻电磁感应下分数阶异构神经网络。然后利用相图、分岔图、李雅普诺夫指数谱和吸引盆等动力学分析方法,对该网络进行数值研究。结果表明该神经网络表现出丰富的动力学行为,包括共存行为、反单调现象、瞬态混沌和放电行为等,为研究人脑放电行为提供支持,随后进一步利用时间反馈控制方法实现了双稳态的控制。最后,在嵌入式硬件平台上实现了该神经网络,验证了仿真结果的有效性。
    The dynamic behaviors of coupled neurons with different mathematical representations have received more and more attention in recent years. The coupling between heterogeneous neurons can show richer dynamic phenomena, which is of great significance in understanding the function of the human brain. In this paper, we present a fraction-order heterogeneous network with three neurons that is built by coupling a FN neuron with two HR neurons. Complex electromagnetic surroundings have meaningful physical impacts on the electrical activities of neurons. To imitate the effects of electromagnetic induction on the three-neuron heterogeneous network, we introduce a fraction-order locally active memristor in the neural network. The characteristics of this memristor are been carefully analyzed by pinched hysteresis loops and its locally active characteristic is been proved by the power-off plot and the DC v-i plot. Then, the parameter-dependent dynamic activities are investigated numerically using several dynamical analysis methods, such as the phase diagrams, bifurcation diagrams, Lyapunov exponent spectrums, and attraction basins. Furthermore, abundant dynamic behaviors, including coexisting activities, anti-monotonicity phenomena, transient chaos and firing patterns are revealed in this network, which support further investigation of the firing patterns of the human brain. In particular, complex dynamics, including coexisting attractors, anti-monotonicity, and firing patterns, can be influenced by the order and strength of electrical synaptic coupling and electromagnetic induction. The control of the bistable state can be realized through the time feedback control method, so that the bistable state can be transformed into an ideal monostable state. The study of the fraction-order memristive neural network may expand the field of view for understanding the collective behaviors of neurons. Finally, based on the ARM platform, we give a digital implementation of the fraction-order memristive neural network, which can verify the consistency with the numerical simulation results. In the future, we will explore more interesting memristive neural networks and research different types of methods to control the firing behaviors of the networks.
  • [1]

    Zhou X R, Luo X S, Jing P Q, Yuan W J 2007 Acta Phys. Sin. 56 5679 (in Chinese) [周小荣,罗晓曙,蒋品群,袁五届 2007物理学报 56 5679]

    [2]

    Xu Y, Jia Y, Ge M Y, Lu L L, Yang L J, Zhan X 2018 Neurocomputing 283 196

    [3]

    Izhikevich, E. M 2003 IEEE Trans Neural Netw 14 6

    [4]

    Bao B C, Yang Q, Zhu L, Bao H 2019 Int. J. Bifurc. Chaos 29 10

    [5]

    Hindmarsh J L, Rose R M 1982 Nature 296 5853

    [6]

    Hindmarsh J L, Rose R M 1984 Proc R Soc Lond, Ser B: Biol Sci 221 1222

    [7]

    Izhikevich E M, Fitzhugh R 2006 Scholarpedia 1 1349

    [8]

    Chay T R 1985 Physica D 16 2

    [9]

    Xu Q, Liu T, Feng C T, Bao H, Wu H G, Bao B C 2021 Chin Phys B 30 128702

    [10]

    Li Z J, Zhou H Y, Wang M J and Ma M L 2021 Nonlinear Dyn 104 2

    [11]

    Ding D W, Jiang L, Hu Y B, Yang Z L, Li Q 2021 Chaos 31 8

    [12]

    Njitacke Z T, Awrejcewicz J, Ramakrishnan B, Rajagopal K and Kengne J 2022 Nonlinear Dyn 107 3

    [13]

    De S and Balakrishnan J 2020 Commun Nonlinear Sci Numer Simul 90 105391

    [14]

    Sun X J, Yang B H, Wu Y, Xiao J H 2014 Acta Phys. Sin. 63 120502 (in Chinese) [孙晓娟,杨白桦,吴晔,肖井华 2014 物理学报 63 120502]

    [15]

    Ding X L, Gu H G, Jia B, Li Y Y 2021 Acta Phys. Sin. 70 218701 (in Chinese) [丁学利,古华光,贾冰,李玉叶 2021 物理学报 70 218701]

    [16]

    Wu Y, Xu J X, He D H, Jin W Y 2005 Acta Phys. Sin. 54 3457 (in Chinese) [吴莹,徐健学,何岱海,靳伍银 2005物理学报 54 3457]

    [17]

    Lv M, Ma J, Yao Y G and Alzahrani F 2019 Sci China-Technol Sci 62 3

    [18]

    Hu X X, Liu C X, Liu L, Ni J K and Yao Y P 2018 Nonlinear Dyn 91 3

    [19]

    Wan Q Z, Yan Z D, Li F, Chen S M and Liu J 2022 Chaos 32 7

    [20]

    Lin H R, Wang C H, Hong Q H and Sun Y C 2020 IEEE Trans Circuits Syst II-Express Briefs 67 12

    [21]

    Li C L, Li H D, Xie W W and Du J R 2021 Nonlinear Dyn 106 1

    [22]

    Yu F, Zhang Z N, Shen H, Huang Y Y, Cai S and Du S C 2022 Chin Phys B 31 2

    [23]

    Luo J, Sun L, Qiao Y H 2022 Chin. J. Comput. Phys. 39 109 (in Chinese) [罗佳,孙亮,乔印虎 2022 计算物理 39 109]

    [24]

    Xu Q, Ju Z T, Ding S K, Feng C T, Chen M and Bao B C 2022 Cogn Neurodyn 16 5

    [25]

    Bao H, Hu A H, Liu W B and Bao B C 2020 IEEE Trans Neural Netw Learn Syst 31 2

    [26]

    Bao H, Liu W B and Hu A H 2019 Nonlinear Dyn 95 1

    [27]

    Tenreiro Machado J, Duarte F B,Duarte G M, 2012 Int J Bifurcat Chaos 22 10

    [28]

    Tenreiro Machado J A,Lopes A M, 2016 Nonlinear Dyn 86 3

    [29]

    Tzounas G, Dassios I, Murad M A A,Milano F, 2020 IEEE Transactions on Power Systems 35 6

    [30]

    Kërçi T, Giraldo J,Milano F, 2020 International Journal of Electrical Power & Energy Systems 119

    [31]

    Chen L, He Z L, Li C D, Wen S P,Chen Y R, 2020 Int J Bifurcat Chaos 30 12

    [32]

    Jahanshahi H, Yousefpour A, Munoz-Pacheco J M, Kacar S, Viet-Thanh P, Alsaadi F E, 2020 Applied Mathematics and Computation 383

    [33]

    Dong J, Zhang G j, Xie Y, Yao H,Wang J, 2014 Cogn Neurodynamics 8 2

    [34]

    Wu G C and Baleanu D 2015 Commun Nonlinear Sci Numer Simul 22 1-3

    [35]

    Lin H R, Wang C H, Sun Y C and Yao W 2020 Nonlinear Dyn 100 4

    [36]

    Li Z J, Zhou H Y, Wang M J,Ma M L, 2021 Nonlinear Dyn 104 2

    [37]

    Chua L 2013 Nanotechnology 24 38

    [38]

    Chua L 2015 Radioengineering 24 2

    [39]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T and Slesazeck S 2019 IEEE Trans Circuits Syst I-Regul 66 7

    [40]

    Yu H, Du S Z, Dong E Z and Tong J G 2022 Chaos Solitons Fractals 160 8

    [41]

    Li C B, Wang X,Chen G R, 2017 Nonlinear Dyn 90 2

    [42]

    Li C B, Sprott J C, Hu W,Xu Y J, 2017 Int J Bifurcat Chaos 27 10

    [43]

    Park J H, Huh S H, Kim S H, Seo S J,Park G T, 2005 IEEE Transactions on Neural Networks 16 2

    [44]

    Yadav K, Prasad A and Shrimali M D 2018 Phys Lett A 382 32

  • [1] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为. 物理学报, doi: 10.7498/aps.73.20231972
    [2] 刘建基, 刘甲琛, 张国权. 基于电磁感应透明效应的光学图像加减. 物理学报, doi: 10.7498/aps.72.20221560
    [3] 全旭, 邱达, 孙智鹏, 张贵重, 刘嵩. 一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现. 物理学报, doi: 10.7498/aps.72.20230795
    [4] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, doi: 10.7498/aps.71.20220950
    [5] 武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋. 基于忆阻器的脉冲神经网络硬件加速器架构设计. 物理学报, doi: 10.7498/aps.71.20220098
    [6] 古亚娜, 梁燕, 王光义, 夏晨阳. NbOx忆阻神经元的设计及其在尖峰神经网络中的应用. 物理学报, doi: 10.7498/aps.71.20220141
    [7] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现. 物理学报, doi: 10.7498/aps.71.20220593
    [8] 丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟. 分数阶忆阻耦合异质神经元的多稳态及硬件实现. 物理学报, doi: 10.7498/aps.71.20221525
    [9] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, doi: 10.7498/aps.68.20181938
    [10] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步. 物理学报, doi: 10.7498/aps.67.20172354
    [11] 林飞飞, 曾喆昭. 不确定分数阶时滞混沌系统自适应神经网络同步控制. 物理学报, doi: 10.7498/aps.66.090504
    [12] 许碧荣, 王光义. 忆感器文氏电桥振荡器. 物理学报, doi: 10.7498/aps.66.020502
    [13] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性. 物理学报, doi: 10.7498/aps.65.180501
    [14] 杨科利. 耦合不连续系统同步转换过程中的多吸引子共存. 物理学报, doi: 10.7498/aps.65.100501
    [15] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, doi: 10.7498/aps.65.190502
    [16] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, doi: 10.7498/aps.63.080503
    [17] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, doi: 10.7498/aps.63.010502
    [18] 邓奇湘, 贾贞, 谢梦舒, 陈彦飞. 基于有向网络的Email病毒传播模型及其震荡吸引子研究. 物理学报, doi: 10.7498/aps.62.020203
    [19] 于洪洁, 郑 宁. 非线性函数耦合的Chen吸引子网络的混沌同步. 物理学报, doi: 10.7498/aps.57.4712
    [20] 楼旭阳, 崔宝同. 混沌时滞神经网络系统的反同步. 物理学报, doi: 10.7498/aps.57.2060
计量
  • 文章访问数:  106
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-10

/

返回文章
返回