搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性扰动发展方程的广义迭代解

莫嘉琪

一类非线性扰动发展方程的广义迭代解

莫嘉琪
PDF
导出引用
导出核心图
  • 利用广义变分迭代方法研究了一类非线性发展扰动方程.首先引入一个泛函.然后求其变分,最后构造方程解的迭代关系式.得到了问题的近似解和精确解析解.
    • 基金项目: 国家自然科学基金(批准号:40876010)、中国科学院知识创新工程重要方向性项目(批准号:KZCX2-YW-Q03-08)、公益性行业(气象)科研专项(批准号:GYHY200806010)、大气科学和地球流体力学数值模拟国家重点实验室专项经费、上海市教育委员会E-研究院建设计划(批准号:E03004)和浙江省自然科学基金(批准号:Y6090164) 资助的课题.
    [1]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [2]

    Gu D F, Philander S G H 1994 Science 275 805.

    [3]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 10 (in Chinese) [刘式适、傅遵涛、刘式达、赵 强 2002 物理学报 51 10]

    [4]

    Pan L X, Zuo W M, Yan J R 1995 Acta Phys. Sin. 54 1 (in Chinese) [潘留仙、左伟明、颜家壬 2002 物理学报 54 1]

    [5]

    Pan L X, Liu J L, Li S S, Niu Z C, Feng S L, Zheng H Z 2002 Sci. Chin. 32A 556 (in Chinese) [潘留仙、刘金龙、李树深、牛智川、封松林、郑厚植 2002 中国科学 32A 556]

    [6]

    Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林、董文杰、贾晓静、曹鸿兴 2002 物理学报 51 1181]

    [7]

    Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Phys. Sin. 50 606 (in Chinese) [封国林、戴新刚、王爱慧、丑纪范 2001 物理学报 50 606]

    [8]

    Lin W T, Ji Z Z, Wang B, Zhang X 2002 Prog. Nat. Sci. 12 1326

    [9]

    Wang L S, Xu D Y 2003 Sci. Chin. 32E 488 (in Chinese) [王林山、徐道义 2003 中国科学 32E 488]

    [10]

    Mo J Q, Lin W T 2008 J. Sys. Sci. Complexity 20 119

    [11]

    Mo J Q, Wang H 2007 Acta Ecologica Sin. 27 4366

    [12]

    Mo J Q 2009 Chin. Phys. Lett. 26 060202

    [13]

    Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese) [莫嘉琪 2009 物理学报 58 2930]

    [14]

    Mo J Q, Cheng Y 2009 Acta Phys. Sin. 58 4379 (in Chinese) [莫嘉琪、程 燕 2009 物理学报 58 4379]

    [15]

    Mo J Q 2009 Acta Phys. Sin.2009 58 695 (in Chinese) [莫嘉琪 2009 物理学报 58 695]

    [16]

    Mo J Q, Yao J S 2008 Acta Phys. Sin. 2008 57 7419 (in Chinese) [莫嘉琪、姚静荪 2008 物理学报 57 7419]

    [17]

    Mo J Q 2009 Sci. Chin. 52G 1007

    [18]

    Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 578

    [19]

    Mo J Q, Lin W T, Wang H 2007 Prog. Nat. Sci. 17 230

    [20]

    Mo J Q, Lin W T, Wang H 2008 Chin. Geographical Sci. 18 193

    [21]

    Mo J Q, Lin W T 2008 Chin. Phys. 17 370

    [22]

    Mo J Q, Lin W T 2008 Chin. Phys. 17 743

    [23]

    Mo J Q 2010 Chin. Phys. 19 010203

    [24]

    Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. 19 030202

    [25]

    Huang N N 1996 Theory of Solitons and Method of Perturbations (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [黄念宁 1996 孤子理论和扰动方法(上海:上海科技教育出版社)]

    [26]

    Pan L X, Yan J R, Zhou G H 2001 Chin. Phys. 10 594

    [27]

    Zheng Q, Yue P 2006 Chin. Phys. 15 35

    [28]

    He H S, Chen J, Yang K Q 2005 Chin. Phys. 14 1926

    [29]

    Lu F L, Chen C Y 2005 Chin. Phys. 14 463

    [30]

    Zhang X A, Chen K, Duan Z I 2005 Chin. Phys. 14 42

    [31]

    Teman R 1988 Infinite-Dimensional Dynamical System in Mechnica and Physica (New York: Springer)

    [32]

    Zhu Z W, Lu Y 2000 J. Xhin. Quart. Math. 15 71

    [33]

    Zhang Q, Yue P, Gong L X 2006 Chin. Phys. 15 35

    [34]

    Zhang J W, Wang D X, Wu R H 2008 Acta Phys. Sin. 57 2021 (in Chinese) [张建文、王旦霞、 吴润衡 2008 物理学报 57 2021]

    [35]

    He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Publisher) (in Chinese) [何吉欢 2002 工程和科学中的近似非线性分析方法(郑州:河南科学技术出版社)]

  • [1]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [2]

    Gu D F, Philander S G H 1994 Science 275 805.

    [3]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 10 (in Chinese) [刘式适、傅遵涛、刘式达、赵 强 2002 物理学报 51 10]

    [4]

    Pan L X, Zuo W M, Yan J R 1995 Acta Phys. Sin. 54 1 (in Chinese) [潘留仙、左伟明、颜家壬 2002 物理学报 54 1]

    [5]

    Pan L X, Liu J L, Li S S, Niu Z C, Feng S L, Zheng H Z 2002 Sci. Chin. 32A 556 (in Chinese) [潘留仙、刘金龙、李树深、牛智川、封松林、郑厚植 2002 中国科学 32A 556]

    [6]

    Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林、董文杰、贾晓静、曹鸿兴 2002 物理学报 51 1181]

    [7]

    Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Phys. Sin. 50 606 (in Chinese) [封国林、戴新刚、王爱慧、丑纪范 2001 物理学报 50 606]

    [8]

    Lin W T, Ji Z Z, Wang B, Zhang X 2002 Prog. Nat. Sci. 12 1326

    [9]

    Wang L S, Xu D Y 2003 Sci. Chin. 32E 488 (in Chinese) [王林山、徐道义 2003 中国科学 32E 488]

    [10]

    Mo J Q, Lin W T 2008 J. Sys. Sci. Complexity 20 119

    [11]

    Mo J Q, Wang H 2007 Acta Ecologica Sin. 27 4366

    [12]

    Mo J Q 2009 Chin. Phys. Lett. 26 060202

    [13]

    Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese) [莫嘉琪 2009 物理学报 58 2930]

    [14]

    Mo J Q, Cheng Y 2009 Acta Phys. Sin. 58 4379 (in Chinese) [莫嘉琪、程 燕 2009 物理学报 58 4379]

    [15]

    Mo J Q 2009 Acta Phys. Sin.2009 58 695 (in Chinese) [莫嘉琪 2009 物理学报 58 695]

    [16]

    Mo J Q, Yao J S 2008 Acta Phys. Sin. 2008 57 7419 (in Chinese) [莫嘉琪、姚静荪 2008 物理学报 57 7419]

    [17]

    Mo J Q 2009 Sci. Chin. 52G 1007

    [18]

    Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 578

    [19]

    Mo J Q, Lin W T, Wang H 2007 Prog. Nat. Sci. 17 230

    [20]

    Mo J Q, Lin W T, Wang H 2008 Chin. Geographical Sci. 18 193

    [21]

    Mo J Q, Lin W T 2008 Chin. Phys. 17 370

    [22]

    Mo J Q, Lin W T 2008 Chin. Phys. 17 743

    [23]

    Mo J Q 2010 Chin. Phys. 19 010203

    [24]

    Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. 19 030202

    [25]

    Huang N N 1996 Theory of Solitons and Method of Perturbations (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [黄念宁 1996 孤子理论和扰动方法(上海:上海科技教育出版社)]

    [26]

    Pan L X, Yan J R, Zhou G H 2001 Chin. Phys. 10 594

    [27]

    Zheng Q, Yue P 2006 Chin. Phys. 15 35

    [28]

    He H S, Chen J, Yang K Q 2005 Chin. Phys. 14 1926

    [29]

    Lu F L, Chen C Y 2005 Chin. Phys. 14 463

    [30]

    Zhang X A, Chen K, Duan Z I 2005 Chin. Phys. 14 42

    [31]

    Teman R 1988 Infinite-Dimensional Dynamical System in Mechnica and Physica (New York: Springer)

    [32]

    Zhu Z W, Lu Y 2000 J. Xhin. Quart. Math. 15 71

    [33]

    Zhang Q, Yue P, Gong L X 2006 Chin. Phys. 15 35

    [34]

    Zhang J W, Wang D X, Wu R H 2008 Acta Phys. Sin. 57 2021 (in Chinese) [张建文、王旦霞、 吴润衡 2008 物理学报 57 2021]

    [35]

    He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Publisher) (in Chinese) [何吉欢 2002 工程和科学中的近似非线性分析方法(郑州:河南科学技术出版社)]

  • [1] 莫嘉琪, 张伟江, 何 铭. 非线性广义Landau-Ginzburg-Higgs方程孤子解的变分迭代解法. 物理学报, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [2] 莫嘉琪, 陈丽华. 一类Landau-Ginzburg-Higgs扰动方程孤子的近似解. 物理学报, 2008, 57(8): 4646-4648. doi: 10.7498/aps.57.4646
    [3] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [4] 莫嘉琪, 葛红霞, 程荣军. 具有控制项的弱非线性发展方程行波解. 物理学报, 2011, 60(5): 050204. doi: 10.7498/aps.60.050204
    [5] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [6] 杜增吉, 莫嘉琪. 一类扰动发展方程近似解. 物理学报, 2012, 61(15): 155202. doi: 10.7498/aps.61.155202
    [7] 石兰芳, 莫嘉琪. 用广义变分迭代理论求一类相对转动动力学方程的解. 物理学报, 2013, 62(4): 040203. doi: 10.7498/aps.62.040203
    [8] 莫嘉琪, 姚静荪. 扰动KdV方程孤子的同伦映射解. 物理学报, 2008, 57(12): 7419-7422. doi: 10.7498/aps.57.7419
    [9] 莫嘉琪, 林一骅, 王 辉. 广义Landau-Ginzburg-Higgs方程孤子解的扰动理论. 物理学报, 2005, 54(12): 5581-5584. doi: 10.7498/aps.54.5581
    [10] 莫嘉琪. 一类广义Sine-Gordon扰动方程的解析解. 物理学报, 2009, 58(5): 2930-2933. doi: 10.7498/aps.58.2930
    [11] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [12] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [13] 石兰芳, 周先春, 莫嘉琪. 一类大气浅水波系统的广义变分迭代行波近似解. 物理学报, 2013, 62(23): 230202. doi: 10.7498/aps.62.230202
    [14] 莫嘉琪, 林万涛. 厄尔尼诺大气物理机理的变分迭代解法. 物理学报, 2005, 54(3): 1081-1083. doi: 10.7498/aps.54.1081
    [15] 石兰芳, 朱敏, 周先春, 汪维刚, 莫嘉琪. 一类非线性发展方程孤立子行波解. 物理学报, 2014, 63(13): 130201. doi: 10.7498/aps.63.130201
    [16] 莫嘉琪, 姚静荪. 一个广义扰动mKdV耦合系统2极孤子的近似解. 物理学报, 2010, 59(8): 5190-5193. doi: 10.7498/aps.59.5190
    [17] 莫嘉琪, 林万涛. 一个全球气候赤道海气振子模型的变分迭代解法. 物理学报, 2008, 57(11): 6689-6693. doi: 10.7498/aps.57.6689
    [18] 莫嘉琪, 张伟江, 陈贤峰, 林万涛. 激光脉冲放大器增益通量的广义变分迭代解法. 物理学报, 2008, 57(8): 4641-4645. doi: 10.7498/aps.57.4641
    [19] 刘桃香, 唐新峰, 李 涵, 苏贤礼, 张清杰. Sm填充skutterudite化合物中填充原子扰动效应研究. 物理学报, 2008, 57(11): 7078-7082. doi: 10.7498/aps.57.7078
    [20] 路中磊, 魏英杰, 王聪, 曹伟. 开放空腔壳体入水扰动流场结构及空泡失稳特征. 物理学报, 2017, 66(6): 064702. doi: 10.7498/aps.66.064702
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3757
  • PDF下载量:  1745
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-24
  • 修回日期:  2010-05-06
  • 刊出日期:  2011-02-15

一类非线性扰动发展方程的广义迭代解

  • 1. 安徽师范大学数学系,芜湖 241003; 上海高校计算科学E-研究院上海交通大学研究所,上海 200240
    基金项目: 

    国家自然科学基金(批准号:40876010)、中国科学院知识创新工程重要方向性项目(批准号:KZCX2-YW-Q03-08)、公益性行业(气象)科研专项(批准号:GYHY200806010)、大气科学和地球流体力学数值模拟国家重点实验室专项经费、上海市教育委员会E-研究院建设计划(批准号:E03004)和浙江省自然科学基金(批准号:Y6090164) 资助的课题.

摘要: 利用广义变分迭代方法研究了一类非线性发展扰动方程.首先引入一个泛函.然后求其变分,最后构造方程解的迭代关系式.得到了问题的近似解和精确解析解.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回