搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电阻膜的宽频带超材料吸波体的设计

顾超 屈绍波 裴志斌 徐卓 林宝勤 周航 柏鹏 顾巍 彭卫东 马华

基于电阻膜的宽频带超材料吸波体的设计

顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华
PDF
导出引用
导出核心图
  • 基于电阻膜设计了一种宽频带、极化不敏感和宽入射角的超材料吸波体.该吸波体的结构单元由六边形环状电阻膜结构、介质基板和金属背板组成.仿真得到的反射率和吸收率表明,该吸波体在7.027.5 GHz之间对入射电磁波具有宽频带的强吸收,证实了电路谐振相对于电磁谐振易于实现宽带吸波.仿真得到的不同极化角和不同入射角下超材料吸波体的吸收率表明,该吸波体具有极化不敏感和宽入射角特性.仿真得到的基板和电阻膜对超材料吸波体吸收率的影响表明,电阻膜结构和金属背板之间形成的电容以及电阻膜结构的电阻都存在一个最佳值,此时电路谐
    • 基金项目: 国家自然科学基金(批准号:60871027, 60901029, 61071058)、国家重点基础研究发展计划(批准号:2009CB623306)和陕西省自然科学基金(批准号:SJ08F01)资助的课题.
    [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3

    [2]

    Smith D R,Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [3]
    [4]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608

    [5]
    [6]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [7]
    [8]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [9]
    [10]
    [11]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [12]
    [13]

    Govyadinov A A, Podolskiy V A, Noginov A 2007 Appl. Phys. Lett. 91 191103

    [14]
    [15]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [16]
    [17]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [18]
    [19]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [20]
    [21]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [22]
    [23]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [24]
    [25]

    Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D, Lin B Q 2010 Chin. Phys. Lett. 27 117802

    [26]
    [27]

    Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D 42 095408

  • [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3

    [2]

    Smith D R,Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [3]
    [4]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608

    [5]
    [6]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [7]
    [8]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [9]
    [10]
    [11]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [12]
    [13]

    Govyadinov A A, Podolskiy V A, Noginov A 2007 Appl. Phys. Lett. 91 191103

    [14]
    [15]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [16]
    [17]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [18]
    [19]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [20]
    [21]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [22]
    [23]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [24]
    [25]

    Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D, Lin B Q 2010 Chin. Phys. Lett. 27 117802

    [26]
    [27]

    Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D 42 095408

  • [1] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [2] 程用志, 聂彦, 龚荣洲, 王鲜. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计. 物理学报, 2013, 62(4): 044103. doi: 10.7498/aps.62.044103
    [3] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [4] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [5] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料. 物理学报, 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [6] 何政蕊, 耿友林. 一种新型宽频带低损耗小单元左手材料的设计与实现. 物理学报, 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [7] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [8] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究. 物理学报, 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [9] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [10] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1914
  • PDF下载量:  1758
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-29
  • 修回日期:  2011-03-24
  • 刊出日期:  2011-08-15

基于电阻膜的宽频带超材料吸波体的设计

  • 1. 空军工程大学理学院,西安 710051;
  • 2. 西安交通大学电子陶瓷与器件教育部重点实验室,西安 710049;
  • 3. 空军工程大学综合电子信息系统与电子对抗技术研究中心,西安 710051;
  • 4. 成都理工大学工程技术学院,乐山 614300
    基金项目: 

    国家自然科学基金(批准号:60871027, 60901029, 61071058)、国家重点基础研究发展计划(批准号:2009CB623306)和陕西省自然科学基金(批准号:SJ08F01)资助的课题.

摘要: 基于电阻膜设计了一种宽频带、极化不敏感和宽入射角的超材料吸波体.该吸波体的结构单元由六边形环状电阻膜结构、介质基板和金属背板组成.仿真得到的反射率和吸收率表明,该吸波体在7.027.5 GHz之间对入射电磁波具有宽频带的强吸收,证实了电路谐振相对于电磁谐振易于实现宽带吸波.仿真得到的不同极化角和不同入射角下超材料吸波体的吸收率表明,该吸波体具有极化不敏感和宽入射角特性.仿真得到的基板和电阻膜对超材料吸波体吸收率的影响表明,电阻膜结构和金属背板之间形成的电容以及电阻膜结构的电阻都存在一个最佳值,此时电路谐

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回