搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期型二元颗粒链中孤波传播的二体碰撞近似分析

陈琼 杨先清 赵新印 王振辉 赵跃民

周期型二元颗粒链中孤波传播的二体碰撞近似分析

陈琼, 杨先清, 赵新印, 王振辉, 赵跃民
PDF
导出引用
  • 本文运用二体碰撞近似理论研究了孤波在周期型二元颗粒链中的传播. 周期型二元颗粒链由N个大球和一个小球交替排列而成, 球的材质都相同. 将小球和与之相邻的大球等效成一个球, 形成一条等效链. 采用二体碰撞近似理论, 推导了孤波在颗粒链中传播的速度、通过颗粒链时间以及小球的振荡频率. 理论分析得到小球振荡频率随着半径的增大而减小, 该结果与计算机模拟结果符合得相当好. 二体碰撞近似理论给出的波通过整条颗粒链时间, 在N 2时与计算机模拟结果符合得很好. 理论计算的误差随链长的变化不大. 但随着N的增大, 理论得到的结果相对误差变大.
    • 基金项目: 国家自然科学基金创新研究群体科学基金(批准号:50921002)和中央高校基本科研业务费专项资金(批准号:2010LKWL09)资助的课题.
    [1]

    Huang J, Sun Q C 2007 Acta Phys. Sin. 56 6124 (in Chinese) [黄晋, 孙其诚 2007 物理学报 56 6124]

    [2]

    Wang P J, Xia J H, Liu C S, Liu H, Yan L 2011 Acta Phys. Sin. 60 014501 (in Chinese) [王平建, 夏继宏, 刘长松, 刘会, 闫龙 2011 物理学报 60 014501]

    [3]

    Sen S, Hong J, Bang J, Acalos E, Doney R 2008 Phy. Rep. 462 21

    [4]

    Carretero-Gonález R, Khatri D, Porter M A, Kevrekidis P G, Daraio C 2009 Phys. Rev. Lett. 102 024102

    [5]

    Hong J, Xu A 2001 Phys. Rev. E 63 061310

    [6]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [7]

    Daroio C, Nesterenko V F, Herbold E B, Jin S 2006 Phys. Rev. Lett. 96 058002

    [8]

    Daraio C, Ngo D, Nesterenko V F, Fraternali F 2010 Phys. Rev. E 82 036603

    [9]

    Job S, Santibanez F, Tapia F, Melo F 2009 Phys. Rev. E 80 025602(R)

    [10]

    Porter M A, Daraio C, Herbold E B, Szelengowicz I, Kevrekidis P G 2008 Phys. Rev. E 77 015601(R)

    [11]

    Vergara L 2006 Phys. Rev. E 73 066623

    [12]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [13]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301(R)

    [14]

    Daraio C, Nesterenko V F, Herbold E B, Jin S 2005 Phys. Rev. E 72 016603

    [15]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [16]

    Hascoet E, Herrmann H J 2000 Eur. Phys. J. B 14 183

    [17]

    Daraio C, Nesterenko V F 2006 Phys. Rev. E 73 026612

    [18]

    Jayaprakash K R, Starosvetsky Y, Vakakis A F 2011 Phys. Rev. E 83 036606

    [19]

    Rosas A, Lindenberg K 2004 Phys. Rev. E 69 037601

    [20]

    Harbola U, Rosas A, Esposito M, Lindenberg K 2009 Phys. Rev. E 80 031303

    [21]

    Harbola U, Rosas A, Romero A H, Esposito M, Lindenberg K 2009 Phys. Rev. E 80 051302

    [22]

    Harbola U, Rosas A, Romero A H, Lindenberg K 2010 Phys. Rev. E 82 011306

    [23]

    Pinto I L D, Rosas A 2010 Phys. Rev. E 82 031308

    [24]

    Pinto I L D, Rosas A, Lindenberg K 2009 Phys. Rev. E 79 061307

  • [1]

    Huang J, Sun Q C 2007 Acta Phys. Sin. 56 6124 (in Chinese) [黄晋, 孙其诚 2007 物理学报 56 6124]

    [2]

    Wang P J, Xia J H, Liu C S, Liu H, Yan L 2011 Acta Phys. Sin. 60 014501 (in Chinese) [王平建, 夏继宏, 刘长松, 刘会, 闫龙 2011 物理学报 60 014501]

    [3]

    Sen S, Hong J, Bang J, Acalos E, Doney R 2008 Phy. Rep. 462 21

    [4]

    Carretero-Gonález R, Khatri D, Porter M A, Kevrekidis P G, Daraio C 2009 Phys. Rev. Lett. 102 024102

    [5]

    Hong J, Xu A 2001 Phys. Rev. E 63 061310

    [6]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [7]

    Daroio C, Nesterenko V F, Herbold E B, Jin S 2006 Phys. Rev. Lett. 96 058002

    [8]

    Daraio C, Ngo D, Nesterenko V F, Fraternali F 2010 Phys. Rev. E 82 036603

    [9]

    Job S, Santibanez F, Tapia F, Melo F 2009 Phys. Rev. E 80 025602(R)

    [10]

    Porter M A, Daraio C, Herbold E B, Szelengowicz I, Kevrekidis P G 2008 Phys. Rev. E 77 015601(R)

    [11]

    Vergara L 2006 Phys. Rev. E 73 066623

    [12]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [13]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301(R)

    [14]

    Daraio C, Nesterenko V F, Herbold E B, Jin S 2005 Phys. Rev. E 72 016603

    [15]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [16]

    Hascoet E, Herrmann H J 2000 Eur. Phys. J. B 14 183

    [17]

    Daraio C, Nesterenko V F 2006 Phys. Rev. E 73 026612

    [18]

    Jayaprakash K R, Starosvetsky Y, Vakakis A F 2011 Phys. Rev. E 83 036606

    [19]

    Rosas A, Lindenberg K 2004 Phys. Rev. E 69 037601

    [20]

    Harbola U, Rosas A, Esposito M, Lindenberg K 2009 Phys. Rev. E 80 031303

    [21]

    Harbola U, Rosas A, Romero A H, Esposito M, Lindenberg K 2009 Phys. Rev. E 80 051302

    [22]

    Harbola U, Rosas A, Romero A H, Lindenberg K 2010 Phys. Rev. E 82 011306

    [23]

    Pinto I L D, Rosas A 2010 Phys. Rev. E 82 031308

    [24]

    Pinto I L D, Rosas A, Lindenberg K 2009 Phys. Rev. E 79 061307

  • [1] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波. 物理学报, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [2] 许永红, 韩祥临, 石兰芳, 莫嘉琪. 薛定谔扰动耦合系统孤波的行波近似解法. 物理学报, 2014, 63(9): 090204. doi: 10.7498/aps.63.090204
    [3] 汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解. 物理学报, 2014, 63(11): 110204. doi: 10.7498/aps.63.110204
    [4] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解. 物理学报, 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [5] 李松茂, 王奇, 吴中, 卫青. Kerr类非线性介质周期结构中的慢Bragg孤子. 物理学报, 2001, 50(3): 489-495. doi: 10.7498/aps.50.489
    [6] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [7] 许永红, 姚静荪, 莫嘉琪. (3+1)维Burgers扰动系统孤波的解法. 物理学报, 2012, 61(2): 020202. doi: 10.7498/aps.61.020202
    [8] 欧阳成, 石兰芳, 林万涛, 莫嘉琪. (2+1)维扰动时滞破裂孤波方程行波解的摄动方法. 物理学报, 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [9] 李志斌, 潘素起. 广义五阶KdV方程的孤波解与孤子解. 物理学报, 2001, 50(3): 402-405. doi: 10.7498/aps.50.402
    [10] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法. 物理学报, 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [11] 陈琼, 薛春霞. 基于温度效应的无限长压电圆杆纵波分析. 物理学报, 2020, (0): . doi: 10.7498/aps.70.20200774
    [12] 李志斌, 姚若侠. 非线性耦合微分方程组的精确解析解. 物理学报, 2001, 50(11): 2062-2067. doi: 10.7498/aps.50.2062
    [13] 杨新娥, 高后秀, 李京生, 郑俊娟, 杨渝钦. Cu-Zn-Al合金中类液振荡的非线性机理. 物理学报, 2001, 50(7): 1346-1349. doi: 10.7498/aps.50.1346
    [14] 张承福, 柯孚久. 非均匀磁化等离子体中的二维漂移孤波. 物理学报, 1985, 34(3): 298-305. doi: 10.7498/aps.34.298
    [15] 韩久宁, 王苍龙, 栗生长, 段文山. 二维热离子等离子体中离子声孤波的相互作用. 物理学报, 2008, 57(10): 6068-6073. doi: 10.7498/aps.57.6068
    [16] 毛杰键, 吴波, 付敏, 黄瑛, 杨建荣, 任博, 刘萍. 正压大气环流中的曲面周期波和孤波. 物理学报, 2014, 63(18): 180204. doi: 10.7498/aps.63.180204
    [17] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [18] 韩祥临, 陈贤峰, 莫嘉琪. 一类量子等离子体类孤波的近似解析解. 物理学报, 2014, 63(3): 030202. doi: 10.7498/aps.63.030202
    [19] 石兰芳, 林万涛, 林一骅, 莫嘉琪. 一类非线性方程类孤波的近似解法. 物理学报, 2013, 62(1): 010201. doi: 10.7498/aps.62.010201
    [20] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩. 物理学报, 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1939
  • PDF下载量:  890
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-27
  • 修回日期:  2011-09-01
  • 刊出日期:  2012-02-05

周期型二元颗粒链中孤波传播的二体碰撞近似分析

  • 1. 中国矿业大学理学院, 徐州 221116;
  • 2. 中国矿业大学化工学院, 徐州 221116
    基金项目: 

    国家自然科学基金创新研究群体科学基金(批准号:50921002)和中央高校基本科研业务费专项资金(批准号:2010LKWL09)资助的课题.

摘要: 本文运用二体碰撞近似理论研究了孤波在周期型二元颗粒链中的传播. 周期型二元颗粒链由N个大球和一个小球交替排列而成, 球的材质都相同. 将小球和与之相邻的大球等效成一个球, 形成一条等效链. 采用二体碰撞近似理论, 推导了孤波在颗粒链中传播的速度、通过颗粒链时间以及小球的振荡频率. 理论分析得到小球振荡频率随着半径的增大而减小, 该结果与计算机模拟结果符合得相当好. 二体碰撞近似理论给出的波通过整条颗粒链时间, 在N 2时与计算机模拟结果符合得很好. 理论计算的误差随链长的变化不大. 但随着N的增大, 理论得到的结果相对误差变大.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回