搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化

姜冰一 郑建邦 王春锋 郝娟 曹崇德

引用本文:
Citation:

基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化

姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德

Optimization of quantum dot solar cells based on structures of GaAs/InAs-GaAs/ZnSe

Jiang Bing-Yi, Zheng Jian-Bang, Wang Chun-Feng, Hao Juan, Cao Chong-De
PDF
导出引用
  • 基于GaAs/InAs-GaAs/ZnSe的P-i-N量子点太阳电池结构, 根据光学原理和扩散理论建立了光生电流密度与膜层厚度相关的数学模型, 定量分析了量子点层厚度等参数对太阳电池性能的影响,以期达到提高量子 点太阳电池转换效率的目的.理论模拟表明:在i层厚度取3000 nm时,优化后P(GaAs)型、N(ZnSe)型层 薄膜的最佳膜厚为1541 nm, 78 nm, 并在单一波长下太阳电池转换效率为20.1%;同时量子 点体积和温度对于量子点太阳电池I-V特性也会产生影响, 当量子点体积和温度逐渐增大时, 开路电压呈现减小趋势,使得转换效率降低.
    Based on the structures of GaAs/InAs-GaAs/ZnSe P-i-N quantum dot solar cells, according to the optical principle and diffusion theory, mathematic model describing the relationship between photogenerated electron current density and thickness of layer is proposed, and the effect of the quantum dot layer on the characteristics of solar cell is analyzed quantitatively for improving the power conversion efficiency of quantum dot solar cells. Simulations show that the optimal thicknesses of P(GaAs) and N(ZnSe) are 1541 nm and 78 nm respectively when the i layer thickness is 3000 nm, and the power conversion efficiency of solar cell is 20.1% at a single wavelength; At the same time, the volume of quantum dot and the temperature affect I-V property of quantum dot solar cell, and the value of open voltage reduces with the increase of the volume of quantum dot and temperature, so that the power conversion efficiency will be reduced.
    • 基金项目: 西北工业大学基础研究基金(批准号: JC200820, JC201268)和西北工业大 学研究 生创业种子基金(批准号: Z2011020)资助的课题.
    • Funds: Project supported by Northwestern Polytechnical University Foundation for Fundamental Research (Grant Nos. JC200820, JC201268), and Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. Z2011020).
    [1]

    Pejova B, Tanusevski A, Grozdanov I 2004 J. Solid State Chem. 177 4785

    [2]

    Hu W G, Inoue T, Kojima O, Kita T 2010 Appl. Phys. Lett. 97 193106

    [3]
    [4]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [5]
    [6]
    [7]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [8]

    Luque A, Marti A, Arthur Nozik J 2007 MRS Bulletin 32 236

    [9]
    [10]
    [11]

    Popescu V, Bester G, Hanna C M, Norman A G, Zunger A 2008 Phys. Rev. B 78 205321

    [12]

    Pejova B 2010 Mater. Chem. Phys. 119 367

    [13]
    [14]

    Murali K R, Austine A, Trivedi D C 2005 Mater. Lett. 59 2621

    [15]
    [16]

    Liu Y M, Yu C Y, Yang H B, Huang Y Z 2006 Acta Phys. Sin. 55 5023 (in Chinese) [刘玉敏, 俞重远, 杨红波, 黄永箴 2006 物理学报 55 5023]

    [17]
    [18]

    Hsu C T, Lin Y. J, Su Y K, Yokoyama M 1992 J. Crys. Growth 125 420

    [19]
    [20]

    O.Sylvester-Hvid K 2006 J. Phys. Chem. B 110 2618

    [21]
    [22]

    Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封伟, 高中扩 2008 物理学报 57 2567]

    [23]
    [24]
    [25]

    Parent D W, Rodriguez A, Ayers J E, Jain F C 2003 Solar Cells Solid-State Electronic 47 595

    [26]

    Aroutiounian V, Petrosyan S, Khanchatryan A, Touryan K 2001 J. Appl. Lett. 89 2268

    [27]
    [28]
    [29]

    Ren J, Zheng J B, Zhao J L 2007 Acta Phys. Sin. 56 2868 (in Chinese) [任驹, 郑建邦, 赵建林 2007 物理学报 56 2868]

    [30]

    Peumans P 2004 Ph. D. Dissertation (Princeton: Princeton University) 135

    [31]
    [32]

    Henry C H 1980 J. Appl. Phys. 51 4494

    [33]
    [34]
    [35]

    Kiess H, Rehwald W 1995 Solar Energy Materials and Solar Cells 38 45

    [36]

    Paxman M, Nelson J, Connolly J, Barnham K W J, Foxon C T, Roberts J S 1993 J. Appl. Phys. 74 614

    [37]
    [38]

    Shockley W 1950 pn Junction the Shockley Model (Canada: Web-Materials Press) 1

    [39]
    [40]

    Casey H C, Sell D D, Wecht K W 1975 J. Appl. Phys. 46 250

    [41]
    [42]

    Etchebery A., Etman M, Fotouhi B, Gautron J, Sculfort J L, Lemasson P 1982 J. Appl. Phys. 53 8867

    [43]
  • [1]

    Pejova B, Tanusevski A, Grozdanov I 2004 J. Solid State Chem. 177 4785

    [2]

    Hu W G, Inoue T, Kojima O, Kita T 2010 Appl. Phys. Lett. 97 193106

    [3]
    [4]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [5]
    [6]
    [7]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [8]

    Luque A, Marti A, Arthur Nozik J 2007 MRS Bulletin 32 236

    [9]
    [10]
    [11]

    Popescu V, Bester G, Hanna C M, Norman A G, Zunger A 2008 Phys. Rev. B 78 205321

    [12]

    Pejova B 2010 Mater. Chem. Phys. 119 367

    [13]
    [14]

    Murali K R, Austine A, Trivedi D C 2005 Mater. Lett. 59 2621

    [15]
    [16]

    Liu Y M, Yu C Y, Yang H B, Huang Y Z 2006 Acta Phys. Sin. 55 5023 (in Chinese) [刘玉敏, 俞重远, 杨红波, 黄永箴 2006 物理学报 55 5023]

    [17]
    [18]

    Hsu C T, Lin Y. J, Su Y K, Yokoyama M 1992 J. Crys. Growth 125 420

    [19]
    [20]

    O.Sylvester-Hvid K 2006 J. Phys. Chem. B 110 2618

    [21]
    [22]

    Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封伟, 高中扩 2008 物理学报 57 2567]

    [23]
    [24]
    [25]

    Parent D W, Rodriguez A, Ayers J E, Jain F C 2003 Solar Cells Solid-State Electronic 47 595

    [26]

    Aroutiounian V, Petrosyan S, Khanchatryan A, Touryan K 2001 J. Appl. Lett. 89 2268

    [27]
    [28]
    [29]

    Ren J, Zheng J B, Zhao J L 2007 Acta Phys. Sin. 56 2868 (in Chinese) [任驹, 郑建邦, 赵建林 2007 物理学报 56 2868]

    [30]

    Peumans P 2004 Ph. D. Dissertation (Princeton: Princeton University) 135

    [31]
    [32]

    Henry C H 1980 J. Appl. Phys. 51 4494

    [33]
    [34]
    [35]

    Kiess H, Rehwald W 1995 Solar Energy Materials and Solar Cells 38 45

    [36]

    Paxman M, Nelson J, Connolly J, Barnham K W J, Foxon C T, Roberts J S 1993 J. Appl. Phys. 74 614

    [37]
    [38]

    Shockley W 1950 pn Junction the Shockley Model (Canada: Web-Materials Press) 1

    [39]
    [40]

    Casey H C, Sell D D, Wecht K W 1975 J. Appl. Phys. 46 250

    [41]
    [42]

    Etchebery A., Etman M, Fotouhi B, Gautron J, Sculfort J L, Lemasson P 1982 J. Appl. Phys. 53 8867

    [43]
  • [1] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [2] 韩定定, 姚清清, 陈趣, 钱江海. 基于时变小世界模型的航空网优化评估. 物理学报, 2017, 66(24): 248901. doi: 10.7498/aps.66.248901
    [3] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性. 物理学报, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [4] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [5] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [6] 孙鹏, 胡明, 刘博, 孙凤云, 许路加. 金属/多孔硅/单晶硅(M/PS/Si)微结构的电学特性. 物理学报, 2011, 60(5): 057303. doi: 10.7498/aps.60.057303
    [7] 古丽姗, 王东升, 彭勇刚, 郑雨军. 单量子点在双脉冲激发下偏振光子发射的统计特性. 物理学报, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [8] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [9] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [10] 陈环, 彭振康, 傅刚. 碳湿敏膜的非线性感湿特性和导电机理. 物理学报, 2009, 58(11): 7904-7908. doi: 10.7498/aps.58.7904
    [11] 戴存礼, 刘曙娥, 田 亮, 施大宁. 推广的失活网络动力学同步优化. 物理学报, 2008, 57(8): 4800-4804. doi: 10.7498/aps.57.4800
    [12] 王宝瑞, 孙 征, 徐仲英, 孙宝权, 姬 扬, Z. M. Wang, G. J. Salamo. InGaAs/GaAs量子链的光学特性研究. 物理学报, 2008, 57(3): 1908-1912. doi: 10.7498/aps.57.1908
    [13] 张 威, 李梦轲, 魏 强, 曹 璐, 杨 志, 乔双双. ZnO纳米线场效应管的制备及I-V特性研究. 物理学报, 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [14] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [15] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [16] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性. 物理学报, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [17] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [18] 宋晏蓉, 张志刚, 王清月. 使用马丁内兹展宽器的啁啾脉冲放大器特性研究. 物理学报, 2003, 52(3): 581-586. doi: 10.7498/aps.52.581
    [19] 程 成, 何赛灵. 大口径铜蒸气激光“黑心”的优化消除. 物理学报, 2000, 49(7): 1267-1272. doi: 10.7498/aps.49.1267
    [20] 王传奎, 高铁军, 薛成山. 耦合量子细胞的非线性特性. 物理学报, 2000, 49(10): 2033-2036. doi: 10.7498/aps.49.2033
计量
  • 文章访问数:  6538
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-08
  • 修回日期:  2011-12-02
  • 刊出日期:  2012-07-05

/

返回文章
返回