搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ZnS增透膜的顶发射白光有机发光二极管

陈淑芬 邵茗 郭旭 钱妍 石乃恩 解令海 杨洋 黄维

引用本文:
Citation:

基于ZnS增透膜的顶发射白光有机发光二极管

陈淑芬, 邵茗, 郭旭, 钱妍, 石乃恩, 解令海, 杨洋, 黄维

Top-emitting white organic light-emitting diodes based on a ZnS light outcoupling layer

Chen Shu-Fen, Shao Ming, Guo Xu, Qian Yan, Shi Nai-En, Xie Ling-Hai, Yang Yang, Huang Wei
PDF
导出引用
  • 顶发射白光有机发光二极管(TEWOLED)在白光照明和全彩显示中有着良好的应用前景, 克服顶发射器件中的微腔效应是制备光电性能良好的TEWOLED的前提. 使用具有高折射率的ZnS作为增透膜改善金属阴极在蓝光波段的透射率,降低其反射性, 从而有效抑制了微腔的影响.同时利用转移矩阵理论和宽角干涉方法分别对阴极结构和 蓝光发光层位置进行了优化,最终获得了高效、色纯度良好、色度随视角变化小的TEWOLED. 最高亮度和效率分别达到9213 cd/m2和3 cd/A,色坐标位于白光区且接近白光等能点, 同时具有良好的视角稳定性,在060范围内色坐标仅变化(0.02, 0).
    Top-emitting white organic light-emitting diode (TEWOLED) has potential applications in lighting and full color displays. Microcavity effect in TEWOLED restrains the realization of the white emission with excellent optical and electric performances. In this paper, a ZnS film with a high refractive index used as a light outcoupling layer is introduced into the metal cathode to enhance its transmittivity to a maximal value in the blue light wavelength region. In addition, transfer matrix theory is utilized to optimize the thicknesses of the cathode and the ZnS outcoupling layer and the wide-angle interference is used to design the position of the blue emission layer inside the organic light-emitting diode. Based on the above work, the white light with relatively high luminous efficiency, good color purity, and small CIE coordinate change is acquired. The corresponding luminance and current efficicency are 9213 cd/m2 and 3 cd/A, respectively. The CIE coordinates belong to the white emission and are near the white light equal-energy point. The white emission also shows stable spectra with respect to the observation angle, with a limited CIE coordinate change of (0.02, 0) for a large observation angle change from 0 to 60.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2009CB930600)、 国家自然科学基金(批准号: 60907047, 60977024, 21101095, 20974046, 21003076, 51173081, 61136003)、 高等学校博士学科点专项科研基金(批准号: 20093223120003)、 江苏省自然科学基金(批准号: BK2009423)、江苏省高等学校自然科学基金(批准号: SJ209003, 09KJB150009, 10KJB510013, TJ209035)、江苏省青蓝工程 和南京邮电大学攀登计划(批准号: NY210015)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB930600), the National Natural Science Foundation of China (Grant Nos. 60907047, 60977024, 21101095, 20974046, 21003076, 51173081, 61136003), the Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20093223120003), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009423), the Natural Science Foundation of Institution of Higher Education of Jiangsu Province, China (Grant Nos. SJ209003, 09KJB150009, 10KJB510013, TJ209035), the Qing Lan Program of Jiangsu Province, China, and the Climbing Program of Nanjing University of Posts and Telecommunications, China (Grant No. NY210015).
    [1]

    Tang C W, Van Slyke S A 1987 Appl. Phys. Lett. 51 913

    [2]

    Burroughes J H 1990 Nature 347 539

    [3]

    Gustufsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J 1992 Nature 357 447

    [4]

    Cao Y, Treacy G M, Smith P, Heeger A J 1992 Appl. Phys. Lett. 60 2711

    [5]

    Gu G, Shen Z, Burrows P E, Forrest S R 1997 Adv. Mater. 9 725

    [6]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese) [杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [7]

    Xu X M, Peng J C, Li H J, Qu S, Zhao C J, Luo X H 2004 Acta Phys. Sin. 53 286 (in Chinese) [许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华 2004 物理学报 53 286]

    [8]

    Kido J, Shionoya H, Nagai K 1995 Appl. Phys. Lett. 67 2281

    [9]

    Feng J, Li F, Gao W B, Liu S Y, Liu Y, Wang Y 2001 Appl. Phys. Lett. 78 3947

    [10]

    Chen S F, Wu Z J, Zhao Y, Li C N, Hou J Y, Liu S Y 2005 Org. Electron. 6 111

    [11]

    Dodabalapur A, Rothberg L J, Miller T M 1994 Appl. Phys. Lett. 65 2308

    [12]

    Parthasarathy G, Gu G, Forrest S R 1999 Adv. Mater. 11 907

    [13]

    Riel H, Karg S, Beierlein T, Ruhstaller B, Rie\upbeta W 2003 Appl. Phys. Lett. 82 466

    [14]

    Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes H H, Kowalsky W 2003 Appl. Phys. Lett. 82 284

    [15]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [16]

    Kanno H, Sun Y R, Forrest S R 2005 Appl. Phys. Lett. 86 263502

    [17]

    Hsu S F, Lee C C, Hwang S W, Chen C H 2005 Appl. Phys. Lett. 86 253508

    [18]

    Zhu X L, Sun J X, Yu X M, Wong M, Kwok H S 2007 Jpn. J. Appl. Phys. 46 4054

    [19]

    Lee M T, Tseng M R 2008 Curr. Appl. Phys. 8 616

    [20]

    Kim M S, Jeon C H, Lim J T, Yeom G Y 2008 Thin Solid Films 11 3590

    [21]

    Ji W Y, Zhang L T, Gao R X, Zhang L M, Xie W F, Zhang H Z, Li B 2008 Opt. Express 16 15489

    [22]

    Thomschke M, Nitsche R, Furno M, Leo K 2009 Appl. Phys. Lett. 94 083303

    [23]

    Ji W Y, Zhang L T, Zhang T Y, Xie W F, Zhang H Z 2010 Org. Electron. 11 202

    [24]

    Xie G H, Zhang Z S, Xue Q, Zhang S M, Zhao L, Luo Y, Chen P, Quan B F, Zhao Y, Liu S Y 2010 Org. Electron. 11 2055

    [25]

    Chen S M, Kwok H S 2011 Org. Electron. 12 677

    [26]

    Ji W Y, Zhao J L, Sun Z C, Xie W F 2011 Org. Electron. 12 1137

    [27]

    Ma J, Piao X C, Liu J, Zhang L T, Zhang T Y, Liu M, Li T, Xie W F, Cui H N 2011 Org. Electron. 12 923

    [28]

    Chen S F, Xie W F, Meng Y L, Chen P, Zhao Y, Liu S Y 2008 J. Appl. Phys. 103 054506

    [29]

    Sun Y, Noel C, Hiroshi K, Biwu M, Thompson M E, Forrest S R 2006 Nature 440 908

    [30]

    Xie J, Chen C Y, Chen S F, Yang Y, Shao M, Guo X, Fan Q L, Huang W 2011 Org. Electron. 12 322

  • [1]

    Tang C W, Van Slyke S A 1987 Appl. Phys. Lett. 51 913

    [2]

    Burroughes J H 1990 Nature 347 539

    [3]

    Gustufsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J 1992 Nature 357 447

    [4]

    Cao Y, Treacy G M, Smith P, Heeger A J 1992 Appl. Phys. Lett. 60 2711

    [5]

    Gu G, Shen Z, Burrows P E, Forrest S R 1997 Adv. Mater. 9 725

    [6]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese) [杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [7]

    Xu X M, Peng J C, Li H J, Qu S, Zhao C J, Luo X H 2004 Acta Phys. Sin. 53 286 (in Chinese) [许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华 2004 物理学报 53 286]

    [8]

    Kido J, Shionoya H, Nagai K 1995 Appl. Phys. Lett. 67 2281

    [9]

    Feng J, Li F, Gao W B, Liu S Y, Liu Y, Wang Y 2001 Appl. Phys. Lett. 78 3947

    [10]

    Chen S F, Wu Z J, Zhao Y, Li C N, Hou J Y, Liu S Y 2005 Org. Electron. 6 111

    [11]

    Dodabalapur A, Rothberg L J, Miller T M 1994 Appl. Phys. Lett. 65 2308

    [12]

    Parthasarathy G, Gu G, Forrest S R 1999 Adv. Mater. 11 907

    [13]

    Riel H, Karg S, Beierlein T, Ruhstaller B, Rie\upbeta W 2003 Appl. Phys. Lett. 82 466

    [14]

    Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes H H, Kowalsky W 2003 Appl. Phys. Lett. 82 284

    [15]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [16]

    Kanno H, Sun Y R, Forrest S R 2005 Appl. Phys. Lett. 86 263502

    [17]

    Hsu S F, Lee C C, Hwang S W, Chen C H 2005 Appl. Phys. Lett. 86 253508

    [18]

    Zhu X L, Sun J X, Yu X M, Wong M, Kwok H S 2007 Jpn. J. Appl. Phys. 46 4054

    [19]

    Lee M T, Tseng M R 2008 Curr. Appl. Phys. 8 616

    [20]

    Kim M S, Jeon C H, Lim J T, Yeom G Y 2008 Thin Solid Films 11 3590

    [21]

    Ji W Y, Zhang L T, Gao R X, Zhang L M, Xie W F, Zhang H Z, Li B 2008 Opt. Express 16 15489

    [22]

    Thomschke M, Nitsche R, Furno M, Leo K 2009 Appl. Phys. Lett. 94 083303

    [23]

    Ji W Y, Zhang L T, Zhang T Y, Xie W F, Zhang H Z 2010 Org. Electron. 11 202

    [24]

    Xie G H, Zhang Z S, Xue Q, Zhang S M, Zhao L, Luo Y, Chen P, Quan B F, Zhao Y, Liu S Y 2010 Org. Electron. 11 2055

    [25]

    Chen S M, Kwok H S 2011 Org. Electron. 12 677

    [26]

    Ji W Y, Zhao J L, Sun Z C, Xie W F 2011 Org. Electron. 12 1137

    [27]

    Ma J, Piao X C, Liu J, Zhang L T, Zhang T Y, Liu M, Li T, Xie W F, Cui H N 2011 Org. Electron. 12 923

    [28]

    Chen S F, Xie W F, Meng Y L, Chen P, Zhao Y, Liu S Y 2008 J. Appl. Phys. 103 054506

    [29]

    Sun Y, Noel C, Hiroshi K, Biwu M, Thompson M E, Forrest S R 2006 Nature 440 908

    [30]

    Xie J, Chen C Y, Chen S F, Yang Y, Shao M, Guo X, Fan Q L, Huang W 2011 Org. Electron. 12 322

计量
  • 文章访问数:  3695
  • PDF下载量:  1031
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-23
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

基于ZnS增透膜的顶发射白光有机发光二极管

  • 1. 南京邮电大学信息材料与纳米技术研究院, 江苏省有机电子与信息显示重点实验室, 南京 210046
    基金项目: 

    国家重点基础研究发展计划(批准号: 2009CB930600)、 国家自然科学基金(批准号: 60907047, 60977024, 21101095, 20974046, 21003076, 51173081, 61136003)、 高等学校博士学科点专项科研基金(批准号: 20093223120003)、 江苏省自然科学基金(批准号: BK2009423)、江苏省高等学校自然科学基金(批准号: SJ209003, 09KJB150009, 10KJB510013, TJ209035)、江苏省青蓝工程 和南京邮电大学攀登计划(批准号: NY210015)资助的课题.

摘要: 顶发射白光有机发光二极管(TEWOLED)在白光照明和全彩显示中有着良好的应用前景, 克服顶发射器件中的微腔效应是制备光电性能良好的TEWOLED的前提. 使用具有高折射率的ZnS作为增透膜改善金属阴极在蓝光波段的透射率,降低其反射性, 从而有效抑制了微腔的影响.同时利用转移矩阵理论和宽角干涉方法分别对阴极结构和 蓝光发光层位置进行了优化,最终获得了高效、色纯度良好、色度随视角变化小的TEWOLED. 最高亮度和效率分别达到9213 cd/m2和3 cd/A,色坐标位于白光区且接近白光等能点, 同时具有良好的视角稳定性,在060范围内色坐标仅变化(0.02, 0).

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回