搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蝙蝠听觉神经系统如何在复杂环境中识别昆虫

丁炯 张宏 童勤业

蝙蝠听觉神经系统如何在复杂环境中识别昆虫

丁炯, 张宏, 童勤业
PDF
导出引用
导出核心图
  • 生物声纳的高灵敏度和高可靠性一直是仿生设计所追求的目标, 然而至今仍没有一个令人信服的物理模型能很好得解释生物声纳优越性能的原因, 其主要是缺乏对动物听觉系统神经信息编码的认识. 本文从蝙蝠听觉神经系统的生理结构出发, 用圆映射和符号动力学方法讨论了蝙蝠听觉神经系统在复杂环境中处理多普勒信号的一种可能性方案, 并通过计算机仿真证明了其合理性. 针对蝙蝠神经系统的不稳定性, 用符号动力学的方法分析神经系统信息处理的机理具有良好的鲁棒性和高灵敏度. 这种新的信号处理方法的研究, 为生物声纳信号的处理过程的进一步认识提供了一种新的解释.
    • 基金项目: 国家自然科学基金(批准号:60871085)资助的课题.
    [1]

    Brock F M 2011 Science 333 528

    [2]

    Nobuo S 1990 Scientific American 262 60

    [3]

    Fontaine B, Peremans H 2009 J. Acoust. Soc. America 125 3052

    [4]

    Sanderson M I, Neretti N, Intrator N, Simmons J A 2003 J. Acoust. Soc. America 114 1648

    [5]

    Neretti N, Intrator N, Sanderson M I, Simmons J A, Cooper L N 2003 OCEANS 2003 Proceedings (San Diego, CA, USA: IEEE Xplore) p604

    [6]

    Müller R 2003 Network: Computation in Neural Systems 14 595

    [7]

    O'Neill W E, Nobuo S 1979 Science 203 69

    [8]

    Long C V, Flint J A, Lepper P A 2010 J. Acoust. Soc. America 128 2238

    [9]

    Ma X F, Suga N 2009 J. Neurosci 29 4888

    [10]

    Bear M F, Conors B W, Paradiso M A 2001 Neuroscience Exploring the Brain (2nd Ed.) (London: Lippincott Williams & Wilkins Inc) p350-p395

    [11]

    Nicholls J G, Martin A R, Wallace B G, Fuchs P A 2001 From Neuron to Brain (4th Ed) (Sunderland: Sinauer Associates, Inc) p429-442

    [12]

    Rose J E, Hind J E, Anderson D J, Brugge J F 1971 Journal of Neurophysiology 34 685

    [13]

    Edelman G M, Gally J A 2001 The National Academy of Sciences 98 13763

    [14]

    Zhang H, Liu S F, Qian M Q, Tong Q Y 2009 Acta Phys. Sin 58 7322 (in Chinese) [张宏, 刘淑芳, 钱鸣奇, 童勤业 2009 物理学报 58 7322]

    [15]

    Scheper V, Paasche G, Miller J M, Warnecke A, Berkingali N, Lenarz T, Stover T 2009 Journal of neuroscience resaerch 87 1389

    [16]

    Nayagam B A, Muniak M A, Ryugo D K 2011 Hearing Research 278 2

    [17]

    Berglund A M, Ryugo D K 1987 The Journal of Comparative Neurology 255 560

    [18]

    Mo J, Li Y Y, Wei C L, Yang M H, Gu H G, Qu S X, Ren W 2010 Chinese Phys. B 19 080513

    [19]

    Wang T T, Li W L, Chen Z H, Miao L 2010 Chinese Phys. B 19 076401

    [20]

    Zhou Z L 1997 System of Symbolic Dynamics (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [周作领 1997 符号动力系统 (上海: 上海科技出版社)]

    [21]

    Zhang Z J, Chen S G 1989 Acta Phys. Sin. 38 1 (in Chinese) [张建忠, 陈式刚 1989 物理学报 38 1]

    [22]

    Zhang W Y, Li J M 2011 Chin. Phys. B 20 030701

    [23]

    Lakshmanan S, Balasubramaniam P 2011 Chin. Phys. B 20 040204

    [24]

    Tong Q Y, Qian M Q, Li X, Guo H J, Han X P, Li G, Shen G Y 2006 Sci. Chin. E 36 449 (in Chinese) [童勤业, 钱鸣奇, 郭宏基, 韩晓鹏, 李光, 沈公羽 2006 中国科学 E 36 449]

    [25]

    Tononi G, Edelman G M 1998 Science 282 1846

    [26]

    Edelman G M 1987 Neural Drawinism (New York: Basic Books)

    [27]

    Sporns O, Tononi G, Edelman G M 2000 Neural Networks 13 909

    [28]

    Cathy J P, Karl J F 2011 Trends in Cognitive Sciences 6 416

    [29]

    Zhang H, Fang L P, Tong Q Y 2007 Acta Phys. Sin. 56 7339 (in Chinese) [张宏, 方路平, 童勤业 2007 物理学报 56 7339]

    [30]

    Men C, Wang J, Qin Y M, Wei X L, Che Y Q, Deng Bin 2011 Chin. Phys. B 20 128704

  • [1]

    Brock F M 2011 Science 333 528

    [2]

    Nobuo S 1990 Scientific American 262 60

    [3]

    Fontaine B, Peremans H 2009 J. Acoust. Soc. America 125 3052

    [4]

    Sanderson M I, Neretti N, Intrator N, Simmons J A 2003 J. Acoust. Soc. America 114 1648

    [5]

    Neretti N, Intrator N, Sanderson M I, Simmons J A, Cooper L N 2003 OCEANS 2003 Proceedings (San Diego, CA, USA: IEEE Xplore) p604

    [6]

    Müller R 2003 Network: Computation in Neural Systems 14 595

    [7]

    O'Neill W E, Nobuo S 1979 Science 203 69

    [8]

    Long C V, Flint J A, Lepper P A 2010 J. Acoust. Soc. America 128 2238

    [9]

    Ma X F, Suga N 2009 J. Neurosci 29 4888

    [10]

    Bear M F, Conors B W, Paradiso M A 2001 Neuroscience Exploring the Brain (2nd Ed.) (London: Lippincott Williams & Wilkins Inc) p350-p395

    [11]

    Nicholls J G, Martin A R, Wallace B G, Fuchs P A 2001 From Neuron to Brain (4th Ed) (Sunderland: Sinauer Associates, Inc) p429-442

    [12]

    Rose J E, Hind J E, Anderson D J, Brugge J F 1971 Journal of Neurophysiology 34 685

    [13]

    Edelman G M, Gally J A 2001 The National Academy of Sciences 98 13763

    [14]

    Zhang H, Liu S F, Qian M Q, Tong Q Y 2009 Acta Phys. Sin 58 7322 (in Chinese) [张宏, 刘淑芳, 钱鸣奇, 童勤业 2009 物理学报 58 7322]

    [15]

    Scheper V, Paasche G, Miller J M, Warnecke A, Berkingali N, Lenarz T, Stover T 2009 Journal of neuroscience resaerch 87 1389

    [16]

    Nayagam B A, Muniak M A, Ryugo D K 2011 Hearing Research 278 2

    [17]

    Berglund A M, Ryugo D K 1987 The Journal of Comparative Neurology 255 560

    [18]

    Mo J, Li Y Y, Wei C L, Yang M H, Gu H G, Qu S X, Ren W 2010 Chinese Phys. B 19 080513

    [19]

    Wang T T, Li W L, Chen Z H, Miao L 2010 Chinese Phys. B 19 076401

    [20]

    Zhou Z L 1997 System of Symbolic Dynamics (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [周作领 1997 符号动力系统 (上海: 上海科技出版社)]

    [21]

    Zhang Z J, Chen S G 1989 Acta Phys. Sin. 38 1 (in Chinese) [张建忠, 陈式刚 1989 物理学报 38 1]

    [22]

    Zhang W Y, Li J M 2011 Chin. Phys. B 20 030701

    [23]

    Lakshmanan S, Balasubramaniam P 2011 Chin. Phys. B 20 040204

    [24]

    Tong Q Y, Qian M Q, Li X, Guo H J, Han X P, Li G, Shen G Y 2006 Sci. Chin. E 36 449 (in Chinese) [童勤业, 钱鸣奇, 郭宏基, 韩晓鹏, 李光, 沈公羽 2006 中国科学 E 36 449]

    [25]

    Tononi G, Edelman G M 1998 Science 282 1846

    [26]

    Edelman G M 1987 Neural Drawinism (New York: Basic Books)

    [27]

    Sporns O, Tononi G, Edelman G M 2000 Neural Networks 13 909

    [28]

    Cathy J P, Karl J F 2011 Trends in Cognitive Sciences 6 416

    [29]

    Zhang H, Fang L P, Tong Q Y 2007 Acta Phys. Sin. 56 7339 (in Chinese) [张宏, 方路平, 童勤业 2007 物理学报 56 7339]

    [30]

    Men C, Wang J, Qin Y M, Wei X L, Che Y Q, Deng Bin 2011 Chin. Phys. B 20 128704

  • [1] 张宏, 丁炯, 童勤业, 程千流. 双耳幅值差确定声源方向的神经信息处理机理研究. 物理学报, 2015, 64(18): 188701. doi: 10.7498/aps.64.188701
    [2] 宋忠长, 张宇, 魏翀, 杨武夷, 徐晓辉. 齿鲸生物声纳声发射特性与调控物理机理. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200406
    [3] 陈冲, 丁炯, 张宏, 陈琢. 累积放电模型及其符号动力学研究 . 物理学报, 2013, 62(14): 140502. doi: 10.7498/aps.62.140502
    [4] 徐红梅, 金永镐, 金璟璇. 基于符号动力学的开关变换器时间不可逆性分析. 物理学报, 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [5] 肖方红, 阎桂荣, 韩宇航. 混沌伪随机序列复杂度分析的符号动力学方法. 物理学报, 2004, 53(9): 2876-2881. doi: 10.7498/aps.53.2876
    [6] 刘淑芳, 张宏, 钱鸣奇, 童勤业. 神经系统的简并性与序空间编码分析. 物理学报, 2009, 58(10): 7322-7329. doi: 10.7498/aps.58.7322
    [7] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [8] 任国斌, 王 智, 娄淑琴, 简水生. 光子晶体光纤模式的简并特性研究. 物理学报, 2004, 53(6): 1856-1861. doi: 10.7498/aps.53.1856
    [9] 王 开, 裴文江, 夏海山, 何振亚. 基于符号向量动力学的耦合映像格子初始向量估计. 物理学报, 2007, 56(7): 3766-3770. doi: 10.7498/aps.56.3766
    [10] 刘小峰, 俞文莉. 基于符号动力学的认知事件相关电位的复杂度分析. 物理学报, 2008, 57(4): 2587-2594. doi: 10.7498/aps.57.2587
    [11] 林兰馨, 李小艳, 沈民奋, 常春起. 基于符号动力学的耦合映像格子系统的初值估计. 物理学报, 2009, 58(5): 2921-2929. doi: 10.7498/aps.58.2921
    [12] 宋爱玲, 黄晓林, 司峻峰, 宁新宝. 符号动力学在心率变异性分析中的参数选择. 物理学报, 2011, 60(2): 020509. doi: 10.7498/aps.60.020509
    [13] 王兆军, 张军, 吕国梁, 朱春花. 中子星中简并电子气体的临界磁化. 物理学报, 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [14] 张 波, 丘东元, 陈良刚, 王学梅. DC-DC变换器的符号时间序列描述及模块熵分析. 物理学报, 2008, 57(10): 6112-6119. doi: 10.7498/aps.57.6112
    [15] 王福来. 基于复合符号混沌的伪随机数生成器及加密技术. 物理学报, 2011, 60(11): 110517. doi: 10.7498/aps.60.110517
    [16] 黄晓林, 霍铖宇, 司峻峰, 刘红星. 等概率符号化样本熵应用于脑电分析. 物理学报, 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [17] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级. 物理学报, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [18] 董成伟. 非扩散洛伦兹系统的周期轨道. 物理学报, 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [19] 谢发根. 一维简并双参数四次方映射的符号动力学. 物理学报, 1994, 43(2): 191-197. doi: 10.7498/aps.43.191
    [20] 张忠建, 陈式刚. 圆映象的符号动力学. 物理学报, 1989, 38(1): 1-8. doi: 10.7498/aps.38.1
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2179
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-22
  • 修回日期:  2012-01-12
  • 刊出日期:  2012-08-05

蝙蝠听觉神经系统如何在复杂环境中识别昆虫

  • 1. 浙江大学生物医学工程系, 杭州 310027;
  • 2. 浙江大学生物医学工程教育部重点实验室, 杭州 310027;
  • 3. 浙江大学神经信息学中心, 杭州 310027
    基金项目: 

    国家自然科学基金(批准号:60871085)资助的课题.

摘要: 生物声纳的高灵敏度和高可靠性一直是仿生设计所追求的目标, 然而至今仍没有一个令人信服的物理模型能很好得解释生物声纳优越性能的原因, 其主要是缺乏对动物听觉系统神经信息编码的认识. 本文从蝙蝠听觉神经系统的生理结构出发, 用圆映射和符号动力学方法讨论了蝙蝠听觉神经系统在复杂环境中处理多普勒信号的一种可能性方案, 并通过计算机仿真证明了其合理性. 针对蝙蝠神经系统的不稳定性, 用符号动力学的方法分析神经系统信息处理的机理具有良好的鲁棒性和高灵敏度. 这种新的信号处理方法的研究, 为生物声纳信号的处理过程的进一步认识提供了一种新的解释.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回