搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏秋两季洱海、太湖表层混合层的深度变化特征及其机理分析

赵巧华 孙绩华

夏秋两季洱海、太湖表层混合层的深度变化特征及其机理分析

赵巧华, 孙绩华
PDF
导出引用
  • 湖泊表层混合层深度的变化不仅影响湖泊水生生态系统的演变, 而且影响流域的局地气候、降水量的时空格局等. 基于2008年夏秋两季洱海(高原湖泊)和太湖(平原湖泊)的气象与水温廓线观测资料, 分析探讨了两湖表层混合层深度的变化特征及其机制. 结果表明: 夏季洱海能维持持续的分层现象, 秋季有明显的日分层现象, 而在相应的两季中, 太湖仅可能存在日分层现象; 洱海表层混合层深度较同期太湖更浅; 太湖两季的表层混合层深度变化较洱海频繁, 即太湖水体混合与分层的交替过程对气象条件的响应较洱海更为迅速. 太湖这类浅水湖泊, 水深是抑制其存在稳定、持续分层的关键因素, 在合适的辐射条件下, 可形成日分层现象; 而洱海这类深度的湖泊, 净热量通量是影响其是否存在持续、稳定分层的主要因子. 该研究为进一步探讨湖泊与大气两种湍流运动的耦合机制及水生生态环境演替规律等提供了有力的参考.
    • 基金项目: 国家科技重大专项 (批准号: 2012ZX07101-010) 和国家自然科学基金(批准号: 41071070, 41165001) 资助的课题.
    [1]

    Xu X D, Zhou M Y, Chen J Y, Bian L G, Zhang G Z, Liu H Z, Li S M, Zhang H Z, Zhao Y J, Suo L D J, Wang J Z 2002 Sci. China D 45 577

    [2]

    Haginoya S, Fujii H, Kuwagata T, Xu J Q, Ishigooka Y, Kang S, Zhang Y J 2009 SOLA 5 172

    [3]

    Kara A B, Rochford P A, Hurlburt H E 2000 J. Geophys. Res. 105 16803

    [4]

    Komatsu E, Fukushima T, Harasawa H 2007 Ecol. Model. 209 351

    [5]

    Brown C W, Esaias W E, Thompson A M 1995 Remote Sens. Environ. 53 172

    [6]

    Berger S A, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Wild A, Weigert A, Jäger C G, Striebel M 2006 Oecologia 150 643

    [7]

    Olesen M, Lundsgaard C, Andrushaitis A 1999 J. Marine Syst. 23 127

    [8]

    Kim T W, Cho Y K 2011 J. Geophys. Res. 116 C03010

    [9]

    Deng L M 2003 Water Resour. Res. 24 27 (in Chinese) [邓联木 2003 水资源研究 24 27]

    [10]

    Verta M, Salo S, Korhonen M, Porvari P, Paloheimo A, Munthe J 2010 Sci. Total Environ. 408 3639

    [11]

    Churchill J H, Kerfoot W C 2007 J. Great Lakes Res. 33 143

    [12]

    Mahadevan A, Tandon A, Ferrari R 2010 J. Geophys. Res. 115 C03017

    [13]

    Zhang Y C, Qian X, Tadaharu I I, Kong F X 2008 Sichuan Environment 27 45 (in Chinese) [张玉超, 钱新, 石川忠晴, 孔繁翔 2008 四川环境 27 45]

    [14]

    Zhao L L, Zhu G W, Chen Y F, Li W, Zhu M Y, Xiao X, Cai L L 2011 Adv. Water Sci. 22 844 (in Chinese) [赵林林, 朱广伟, 陈元芳, 李未, 朱梦圆, 姚昕, 蔡琳琳 2011 水科学进展 22 844]

    [15]

    Zhao Q H, Sun J H, Zhu G W 2012 Adv. Atmos. Sci. 21 1360

    [16]

    Abualnaja Y 2009 Mar. Sci. 20 21

    [17]

    Henderson-Sellers B 1987 Environ. Software. 2 78

    [18]

    Tuan N V, Hamagami K, Mori K, Hirai Y 2009 Paddy Water Environ. 7 83

    [19]

    Wang H Z, Zhang R 2012 Acta Phys. Sin. 61 039202(in Chinese) [王辉赞, 张韧 2012 物理学报 61 039202]

    [20]

    Cui H, Zhang S W, Wang Q Y 2009 Acta Phys. Sin. 58 6609 (in Chinese) [崔红, 张书文, 王庆业 2009 物理学报 58 6609]

    [21]

    Ezer T 2000 J. Geophys. Res. 105(C7) 16843

    [22]

    Antonopoulos V Z, Gianniou S K 2001 Ecol. Model. 160 39

    [23]

    Zhang S W, Cao R X, Zhu F Q 2011 Acta Phys. Sin. 60 119201 (in Chinese) [张书文, 曹瑞雪, 朱风芹 2011 物理学报 60 119201]

    [24]

    Doyon P, Klein B, Ingram R G, Legendre L, Tremblay J E, Therriault J C 2000 Deep-Sea Res. PT. II 47 415

    [25]

    Xu L L, Lin X P, Wu D X 2008 Period. Ocean Univ. Chin. 38 183 (in Chinese) [徐玲玲, 林宵, 吴德星 2008 中国海洋大学学报 38 183]

  • [1]

    Xu X D, Zhou M Y, Chen J Y, Bian L G, Zhang G Z, Liu H Z, Li S M, Zhang H Z, Zhao Y J, Suo L D J, Wang J Z 2002 Sci. China D 45 577

    [2]

    Haginoya S, Fujii H, Kuwagata T, Xu J Q, Ishigooka Y, Kang S, Zhang Y J 2009 SOLA 5 172

    [3]

    Kara A B, Rochford P A, Hurlburt H E 2000 J. Geophys. Res. 105 16803

    [4]

    Komatsu E, Fukushima T, Harasawa H 2007 Ecol. Model. 209 351

    [5]

    Brown C W, Esaias W E, Thompson A M 1995 Remote Sens. Environ. 53 172

    [6]

    Berger S A, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Wild A, Weigert A, Jäger C G, Striebel M 2006 Oecologia 150 643

    [7]

    Olesen M, Lundsgaard C, Andrushaitis A 1999 J. Marine Syst. 23 127

    [8]

    Kim T W, Cho Y K 2011 J. Geophys. Res. 116 C03010

    [9]

    Deng L M 2003 Water Resour. Res. 24 27 (in Chinese) [邓联木 2003 水资源研究 24 27]

    [10]

    Verta M, Salo S, Korhonen M, Porvari P, Paloheimo A, Munthe J 2010 Sci. Total Environ. 408 3639

    [11]

    Churchill J H, Kerfoot W C 2007 J. Great Lakes Res. 33 143

    [12]

    Mahadevan A, Tandon A, Ferrari R 2010 J. Geophys. Res. 115 C03017

    [13]

    Zhang Y C, Qian X, Tadaharu I I, Kong F X 2008 Sichuan Environment 27 45 (in Chinese) [张玉超, 钱新, 石川忠晴, 孔繁翔 2008 四川环境 27 45]

    [14]

    Zhao L L, Zhu G W, Chen Y F, Li W, Zhu M Y, Xiao X, Cai L L 2011 Adv. Water Sci. 22 844 (in Chinese) [赵林林, 朱广伟, 陈元芳, 李未, 朱梦圆, 姚昕, 蔡琳琳 2011 水科学进展 22 844]

    [15]

    Zhao Q H, Sun J H, Zhu G W 2012 Adv. Atmos. Sci. 21 1360

    [16]

    Abualnaja Y 2009 Mar. Sci. 20 21

    [17]

    Henderson-Sellers B 1987 Environ. Software. 2 78

    [18]

    Tuan N V, Hamagami K, Mori K, Hirai Y 2009 Paddy Water Environ. 7 83

    [19]

    Wang H Z, Zhang R 2012 Acta Phys. Sin. 61 039202(in Chinese) [王辉赞, 张韧 2012 物理学报 61 039202]

    [20]

    Cui H, Zhang S W, Wang Q Y 2009 Acta Phys. Sin. 58 6609 (in Chinese) [崔红, 张书文, 王庆业 2009 物理学报 58 6609]

    [21]

    Ezer T 2000 J. Geophys. Res. 105(C7) 16843

    [22]

    Antonopoulos V Z, Gianniou S K 2001 Ecol. Model. 160 39

    [23]

    Zhang S W, Cao R X, Zhu F Q 2011 Acta Phys. Sin. 60 119201 (in Chinese) [张书文, 曹瑞雪, 朱风芹 2011 物理学报 60 119201]

    [24]

    Doyon P, Klein B, Ingram R G, Legendre L, Tremblay J E, Therriault J C 2000 Deep-Sea Res. PT. II 47 415

    [25]

    Xu L L, Lin X P, Wu D X 2008 Period. Ocean Univ. Chin. 38 183 (in Chinese) [徐玲玲, 林宵, 吴德星 2008 中国海洋大学学报 38 183]

  • [1] 吴宇航, 郑宁, 文平平, 李粮生, 史庆藩, 孙刚. 准二维二元混合颗粒动态循环反转分层的体积效应. 物理学报, 2011, 60(2): 024501. doi: 10.7498/aps.60.024501
    [2] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法. 物理学报, 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [3] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [4] 郭冠军, 苏 林, 毕思文. 风成海面的极化辐射. 物理学报, 2005, 54(5): 2448-2452. doi: 10.7498/aps.54.2448
    [5] 陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪. MOS结构电离辐射效应模型研究. 物理学报, 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [6] 张向东, 陈虹, 王磊, 赵志高, 赵爱国. 圆柱形分层五模材料声学隐身衣的理论与数值分析. 物理学报, 2015, 64(13): 134303. doi: 10.7498/aps.64.134303
    [7] 韩亦文. 用量子隧穿法研究带质量四极矩静态黑洞的Hawking辐射. 物理学报, 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [8] 孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究. 物理学报, 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [9] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究. 物理学报, 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [10] 杨树政. 对动态缓变Reissner-Nordstr?m黑洞量子辐射特征的研究. 物理学报, 2004, 53(11): 4007-4014. doi: 10.7498/aps.53.4007
    [11] 赵永志, 程 易. 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究. 物理学报, 2008, 57(1): 322-328. doi: 10.7498/aps.57.322
    [12] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究. 物理学报, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [13] 宋太平, 姚国政. 一般球对称带电蒸发黑洞的温度. 物理学报, 2002, 51(5): 1144-1148. doi: 10.7498/aps.51.1144
    [14] 梁子长, 金亚秋. 非均匀随机散射介质层的多次散射和热辐射的分层迭代解. 物理学报, 2003, 52(6): 1319-1325. doi: 10.7498/aps.52.1319
    [15] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点. 物理学报, 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [16] 梁宣文, 李粮生, 侯兆国, 吕 震, 杨 雷, 孙 刚, 史庆藩. 垂直振动作用下二元混合颗粒分层的动态循环反转. 物理学报, 2008, 57(4): 2300-2305. doi: 10.7498/aps.57.2300
    [17] 王进, 尤云祥, 胡天群, 王小青, 朱敏慧. 具有密度跃层分层流体中回转体激发内波特性实验. 物理学报, 2012, 61(7): 074701. doi: 10.7498/aps.61.074701
    [18] 崔巍, 闫在在, 木仁. 三层密度分层流体毛细重力波二阶Stokes波解. 物理学报, 2014, 63(14): 140301. doi: 10.7498/aps.63.140301
    [19] 沈自才, 沈 建, 刘世杰, 孔伟金, 邵建达, 范正修. 渐变折射率薄膜的分层评价探讨. 物理学报, 2007, 56(3): 1325-1328. doi: 10.7498/aps.56.1325
    [20] 张金标. 分层介质中金属栅的平面波散射. 物理学报, 1976, 25(2): 162-167. doi: 10.7498/aps.25.162
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1671
  • PDF下载量:  888
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-12
  • 修回日期:  2012-08-21
  • 刊出日期:  2013-02-05

夏秋两季洱海、太湖表层混合层的深度变化特征及其机理分析

  • 1. 南京信息工程大学, 气象灾害省部共建教育部重点实验室, 南京 210044;
  • 2. 南京信息工程大学遥感学院, 南京 210044;
  • 3. 云南省气象科学研究所, 昆明 650034;
  • 4. 云南省大理市气象局, 大理 671003
    基金项目: 

    国家科技重大专项 (批准号: 2012ZX07101-010) 和国家自然科学基金(批准号: 41071070, 41165001) 资助的课题.

摘要: 湖泊表层混合层深度的变化不仅影响湖泊水生生态系统的演变, 而且影响流域的局地气候、降水量的时空格局等. 基于2008年夏秋两季洱海(高原湖泊)和太湖(平原湖泊)的气象与水温廓线观测资料, 分析探讨了两湖表层混合层深度的变化特征及其机制. 结果表明: 夏季洱海能维持持续的分层现象, 秋季有明显的日分层现象, 而在相应的两季中, 太湖仅可能存在日分层现象; 洱海表层混合层深度较同期太湖更浅; 太湖两季的表层混合层深度变化较洱海频繁, 即太湖水体混合与分层的交替过程对气象条件的响应较洱海更为迅速. 太湖这类浅水湖泊, 水深是抑制其存在稳定、持续分层的关键因素, 在合适的辐射条件下, 可形成日分层现象; 而洱海这类深度的湖泊, 净热量通量是影响其是否存在持续、稳定分层的主要因子. 该研究为进一步探讨湖泊与大气两种湍流运动的耦合机制及水生生态环境演替规律等提供了有力的参考.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回