搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究

周东方 余道杰 杨建宏 侯德亭 夏蔚 胡涛 林竞羽 饶育萍 魏进进 张德伟 王利萍

基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究

周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍
PDF
导出引用
导出核心图
  • 综合考虑高功率微波强电场作用下的热致快速电子效应、碰撞频率、 电离频率等充分体现高功率微波特性的参量模型, 基于高功率微波混合大气传输模型, 提出了单脉冲高功率微波混合大气统一非线性击穿模型, 定义了单脉冲高功率微波击穿阈值. 理论研究结果表明: 考虑中性气体分子极化作用以及电子的碰撞热效应后, 大气击穿时对应的等离子体频率明显变大; 大气击穿阈值随高度的增加先逐渐减小然后增大, 在30–60 km区域存在一个极小值. 开展了X波段窄带高功率微波单脉冲大气击穿实验研究, 得到了典型条件下的高功率微波击穿现象、波形和阈值, 且与理论结果一致性较好.
    • 基金项目: 国家自然科学基金(批准号: 61201056, 61271104) 资助的课题.
    [1]

    Barker R J, Edl S (Translated by High-Power Microwave Sources and Technologies group) 2005 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp195-362 (in Chinese) [Barker R J, Edl S 著 《高功率微波源与技术》翻译组译 2005 高功率微波源与技术(北京:清华大学出版社)第195–362页]

    [2]

    Koretzky E, Kuo S P, Kim J 1998 Plasma Phys. 59 315

    [3]

    Sun A P, Li L Q 2002 Nuclear Fusion and Plasma Physics 22 136

    [4]

    Kelley P L 2000 IEEE Journal on Selected Topics in Quantum Electronics 6 1259

    [5]

    Jiang S E 1996 Chinese Journal of Quantum Electronics 13 278

    [6]

    Wang G P, Xiang F, Tan J, Cao S Y, Luo M, Kang Q, Chang A B 2011 Acta Phys. Sin. 60 072901 (in Chinese) [王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧 2011 物理学报 60 072901]

    [7]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国2011物理学报 60 025217]

    [8]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [9]

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵浩, 刘国治2001物理学报 50 2387]

    [10]

    Liu J Y, Fang J Y 2000 High Power Laser and Particle Beams 12 497 (in Chinese) [刘静月, 方进勇 2000 强激光与粒子束 12 497]

    [11]

    Yu D J, Zhang C F, Peng P, Niu Z X 2008 Jounal of Microwave 24 74 (in Chinese) [余道杰, 张长峰, 彭平, 牛忠霞 2008 微波学报 24 74]

    [12]

    Rao Y P, Song H, Niu Z X 2008 Modern Radar 30 93 (in Chinese) [饶育萍, 宋航, 牛忠霞 2008 现代雷达 30 93]

    [13]

    International Telecommunication Union. Recommendation ITU-R. 674-4, Attenuation by atmospheric gas[S], 2001

  • [1]

    Barker R J, Edl S (Translated by High-Power Microwave Sources and Technologies group) 2005 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp195-362 (in Chinese) [Barker R J, Edl S 著 《高功率微波源与技术》翻译组译 2005 高功率微波源与技术(北京:清华大学出版社)第195–362页]

    [2]

    Koretzky E, Kuo S P, Kim J 1998 Plasma Phys. 59 315

    [3]

    Sun A P, Li L Q 2002 Nuclear Fusion and Plasma Physics 22 136

    [4]

    Kelley P L 2000 IEEE Journal on Selected Topics in Quantum Electronics 6 1259

    [5]

    Jiang S E 1996 Chinese Journal of Quantum Electronics 13 278

    [6]

    Wang G P, Xiang F, Tan J, Cao S Y, Luo M, Kang Q, Chang A B 2011 Acta Phys. Sin. 60 072901 (in Chinese) [王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧 2011 物理学报 60 072901]

    [7]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国2011物理学报 60 025217]

    [8]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [9]

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵浩, 刘国治2001物理学报 50 2387]

    [10]

    Liu J Y, Fang J Y 2000 High Power Laser and Particle Beams 12 497 (in Chinese) [刘静月, 方进勇 2000 强激光与粒子束 12 497]

    [11]

    Yu D J, Zhang C F, Peng P, Niu Z X 2008 Jounal of Microwave 24 74 (in Chinese) [余道杰, 张长峰, 彭平, 牛忠霞 2008 微波学报 24 74]

    [12]

    Rao Y P, Song H, Niu Z X 2008 Modern Radar 30 93 (in Chinese) [饶育萍, 宋航, 牛忠霞 2008 现代雷达 30 93]

    [13]

    International Telecommunication Union. Recommendation ITU-R. 674-4, Attenuation by atmospheric gas[S], 2001

  • [1] 周前红, 董志伟. 垂直相交高功率微波大气击穿的理论研究. 物理学报, 2013, 62(20): 205202. doi: 10.7498/aps.62.205202
    [2] 魏进进, 周东方, 余道杰, 胡涛, 侯德亭, 张德伟, 雷雪, 胡俊杰. 高功率微波作用下O-离子解吸附产生种子电子过程. 物理学报, 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [3] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [4] 唐涛. 高功率微波土壤击穿的数值验证研究. 物理学报, 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [5] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [6] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [7] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [8] 宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红. 射频击穿等离子体对高功率微波传输特性的影响. 物理学报, 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [9] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [10] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究. 物理学报, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
  • 引用本文:
    Citation:
计量
  • 文章访问数:  919
  • PDF下载量:  496
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-02
  • 修回日期:  2012-06-25
  • 刊出日期:  2013-01-05

基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究

  • 1. 解放军信息工程大学, 郑州 450001
    基金项目: 

    国家自然科学基金(批准号: 61201056, 61271104) 资助的课题.

摘要: 综合考虑高功率微波强电场作用下的热致快速电子效应、碰撞频率、 电离频率等充分体现高功率微波特性的参量模型, 基于高功率微波混合大气传输模型, 提出了单脉冲高功率微波混合大气统一非线性击穿模型, 定义了单脉冲高功率微波击穿阈值. 理论研究结果表明: 考虑中性气体分子极化作用以及电子的碰撞热效应后, 大气击穿时对应的等离子体频率明显变大; 大气击穿阈值随高度的增加先逐渐减小然后增大, 在30–60 km区域存在一个极小值. 开展了X波段窄带高功率微波单脉冲大气击穿实验研究, 得到了典型条件下的高功率微波击穿现象、波形和阈值, 且与理论结果一致性较好.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回