搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集总元件的低频宽带超材料吸波体设计与实验研究

王莹 程用志 聂彦 龚荣洲

基于集总元件的低频宽带超材料吸波体设计与实验研究

王莹, 程用志, 聂彦, 龚荣洲
PDF
导出引用
导出核心图
  • 提出一种基于集总元件的超材料吸波体结构设计, 并进行了理论分析和实验验证. 仿真结果表明, 该吸波体在2.5 GHz到4.46 GHz的低频带内具有吸收率超过95%、半高宽达到70.4%的良好吸收特性. 反演计算得到的等效输入阻抗表明集总元件的加入可以使该结构在较宽的频率范围内有较好的阻抗匹配特性, 介质表面能量损耗分布的模拟计算结果说明能量主要损耗在了集总电阻中, 从而实现低频宽带的吸收特性. 制备了实验样品并用自由空间法进行测试, 测试结果与模拟结果符合得较好. 进一步的实验测试结果表明FR4基板的厚度对该吸波体的吸收特性有明显的调控作用, 且对于固定参数的结构存在最佳匹配厚度.
    • 基金项目: 高等学校博士学科点专项科研基金 (批准号: 20090142110004) 和国家自然科学基金 (批准号: 51207060) 资助的课题.
    [1]

    Cui W Z, Ma W, Qiu L D, Zhang H T 2008 Electromagnetic Metamaterials and its applications (Beijing: National Defense Industry Press) p8 (in Chinese) [崔万照, 马伟, 邱乐德, 张洪太 2008 电磁超介质及其应用 (北京: 国防工业出版社) 第8页]

    [2]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [3]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [5]

    Schurig D, Mock J J, Justice B J 2006 Science 314 977

    [6]

    Palandoken M, Grede A, Henke H 2009 IEEE Trans. Antennas Propag. 57 331

    [7]

    Gu S, Barrett J P, Hand T H 2010 J. Appl. Phys. 108 64913

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 33108

    [10]

    Zhu B, Feng Y J, Zhao J M, Huang C, Jiang T 2010 Appl. Phys. Lett. 97 051906

    [11]

    Li Y X, Xie Y S, Zhang H W 2009 J. Phys. D: Appl. Phys. 42 95408

    [12]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta. Phys. Sin. 59 6078 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6078]

    [13]

    Zhu B, Feng Y J, Zhao J M 2010 Appl. Phys. Lett. 97 51906

    [14]

    Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D, Lin B Q 2010 Chin. Phys. Lett. 27 117802

    [15]

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802 (in Chinese) [顾超, 曲少波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾魏, 彭卫东, 马华 2011 物理学报 60 087802]

    [16]

    Fu L, Schweizer H, Guo H 2008 Phys. Rev. B 78 115110

    [17]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans Antennas Propag. 58 1551

    [18]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese) [程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134102]

    [19]

    Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801

    [20]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

  • [1]

    Cui W Z, Ma W, Qiu L D, Zhang H T 2008 Electromagnetic Metamaterials and its applications (Beijing: National Defense Industry Press) p8 (in Chinese) [崔万照, 马伟, 邱乐德, 张洪太 2008 电磁超介质及其应用 (北京: 国防工业出版社) 第8页]

    [2]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [3]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [5]

    Schurig D, Mock J J, Justice B J 2006 Science 314 977

    [6]

    Palandoken M, Grede A, Henke H 2009 IEEE Trans. Antennas Propag. 57 331

    [7]

    Gu S, Barrett J P, Hand T H 2010 J. Appl. Phys. 108 64913

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 33108

    [10]

    Zhu B, Feng Y J, Zhao J M, Huang C, Jiang T 2010 Appl. Phys. Lett. 97 051906

    [11]

    Li Y X, Xie Y S, Zhang H W 2009 J. Phys. D: Appl. Phys. 42 95408

    [12]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta. Phys. Sin. 59 6078 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6078]

    [13]

    Zhu B, Feng Y J, Zhao J M 2010 Appl. Phys. Lett. 97 51906

    [14]

    Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D, Lin B Q 2010 Chin. Phys. Lett. 27 117802

    [15]

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802 (in Chinese) [顾超, 曲少波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾魏, 彭卫东, 马华 2011 物理学报 60 087802]

    [16]

    Fu L, Schweizer H, Guo H 2008 Phys. Rev. B 78 115110

    [17]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans Antennas Propag. 58 1551

    [18]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese) [程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134102]

    [19]

    Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801

    [20]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2176
  • PDF下载量:  960
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-18
  • 修回日期:  2012-12-12
  • 刊出日期:  2013-04-05

基于集总元件的低频宽带超材料吸波体设计与实验研究

  • 1. 华中科技大学, 光学与电子信息学院, 武汉 430074
    基金项目: 

    高等学校博士学科点专项科研基金 (批准号: 20090142110004) 和国家自然科学基金 (批准号: 51207060) 资助的课题.

摘要: 提出一种基于集总元件的超材料吸波体结构设计, 并进行了理论分析和实验验证. 仿真结果表明, 该吸波体在2.5 GHz到4.46 GHz的低频带内具有吸收率超过95%、半高宽达到70.4%的良好吸收特性. 反演计算得到的等效输入阻抗表明集总元件的加入可以使该结构在较宽的频率范围内有较好的阻抗匹配特性, 介质表面能量损耗分布的模拟计算结果说明能量主要损耗在了集总电阻中, 从而实现低频宽带的吸收特性. 制备了实验样品并用自由空间法进行测试, 测试结果与模拟结果符合得较好. 进一步的实验测试结果表明FR4基板的厚度对该吸波体的吸收特性有明显的调控作用, 且对于固定参数的结构存在最佳匹配厚度.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回