搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-ZnO纳米复合热电材料的制备及其性能研究

吴子华 谢华清 曾庆峰

Ag-ZnO纳米复合热电材料的制备及其性能研究

吴子华, 谢华清, 曾庆峰
PDF
导出引用
  • ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率.
    • 基金项目: 国家自然科学基金(批准号:51206103)、上海市教委科研创新项目(批准号:13YZ128)和上海市东方学者岗位支持计划资助的课题.
    [1]

    Zhou M, Li J F, Kita T 2008 J. Am. Chem. Soc. 130 4527

    [2]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106

    [3]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 物理学报 61 086101]

    [4]

    Shi X, Chen L, Yang J, Meisner G P 2004 Appl. Phys. Lett. 84 2301

    [5]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [6]

    Wu Z H, Xie H Q, Zeng Q F, Yin M 2012 J. Optoelectron. Adv. Mater. 14 262

    [7]

    Ioffe A F, Goldsmid H J 1957 Semiconductor Thermoelements and Thermoelectric Cooling (1st Edn.) (London:Inforesearch) P72

    [8]

    Ohtaki M, Tssubota T, Eguchi K, Arai H 1996 J. Appl. Phys. 79 1816

    [9]

    Ong K P, Singh D J, Wu P, 2011 Phys. Rev. B 83 115110

    [10]

    Jood P, Mehta R J, Zhang Y L, Peleckis G, Wang X, Siegel R W, Tasciuc T B, Dou S X, Ramanath G 2011 Nano. Lett. 11 4337

    [11]

    Ohtaki M, Maehara S, Shige S 2003 Proc. 22th Int. Conf. Thermoelectrics (France) 171

    [12]

    Feng X M, Cheng Y F, Ye C, Ye J S, Peng J Y, Hu J Q 2012 Mater. Lett. 79 205

    [13]

    Karunakaran C, Rajeswari V, Gomathisankar P, Mater 2011 Sci. in Semicon. Proc. 14 133

    [14]

    Lin D D, Wu H, Qin X L, Pan W 2009 Appl. Phys. Lett. 95 112104

    [15]

    Houng B, Huang C J 2006 Surf. Coat. Technol. 201 3188

    [16]

    Bergman D J, Imry Y 1977 Phys. Rev. Lett. 39 1222

    [17]

    Barber W C, Ye F, Belanger D P 2004 Phys. Rev. B 69 024409

    [18]

    Meir Y 1999 Phys. Rev. Lett. 83 3506

    [19]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [20]

    Liu Y S, Chen Y R, Chen Y C 2009 ACS. Nano. 3 3497

    [21]

    Pei Y Z, Andrew A, Snyder G J 2011 Adv. Energy Mater. 1 291

    [22]

    Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS. Nano. 4 513

    [23]

    Meng C Z, Liu C H, Fan S S 2010 Adv. Mater. 22 535

    [24]

    Zhang R Z, Chen W Y, Yang L N 2012 Acta Phys. Sin. 61 187201 (in Chinese) [张睿智, 陈文灏, 杨璐娜 2012 物理学报 61 187201]

  • [1]

    Zhou M, Li J F, Kita T 2008 J. Am. Chem. Soc. 130 4527

    [2]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106

    [3]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 物理学报 61 086101]

    [4]

    Shi X, Chen L, Yang J, Meisner G P 2004 Appl. Phys. Lett. 84 2301

    [5]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [6]

    Wu Z H, Xie H Q, Zeng Q F, Yin M 2012 J. Optoelectron. Adv. Mater. 14 262

    [7]

    Ioffe A F, Goldsmid H J 1957 Semiconductor Thermoelements and Thermoelectric Cooling (1st Edn.) (London:Inforesearch) P72

    [8]

    Ohtaki M, Tssubota T, Eguchi K, Arai H 1996 J. Appl. Phys. 79 1816

    [9]

    Ong K P, Singh D J, Wu P, 2011 Phys. Rev. B 83 115110

    [10]

    Jood P, Mehta R J, Zhang Y L, Peleckis G, Wang X, Siegel R W, Tasciuc T B, Dou S X, Ramanath G 2011 Nano. Lett. 11 4337

    [11]

    Ohtaki M, Maehara S, Shige S 2003 Proc. 22th Int. Conf. Thermoelectrics (France) 171

    [12]

    Feng X M, Cheng Y F, Ye C, Ye J S, Peng J Y, Hu J Q 2012 Mater. Lett. 79 205

    [13]

    Karunakaran C, Rajeswari V, Gomathisankar P, Mater 2011 Sci. in Semicon. Proc. 14 133

    [14]

    Lin D D, Wu H, Qin X L, Pan W 2009 Appl. Phys. Lett. 95 112104

    [15]

    Houng B, Huang C J 2006 Surf. Coat. Technol. 201 3188

    [16]

    Bergman D J, Imry Y 1977 Phys. Rev. Lett. 39 1222

    [17]

    Barber W C, Ye F, Belanger D P 2004 Phys. Rev. B 69 024409

    [18]

    Meir Y 1999 Phys. Rev. Lett. 83 3506

    [19]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [20]

    Liu Y S, Chen Y R, Chen Y C 2009 ACS. Nano. 3 3497

    [21]

    Pei Y Z, Andrew A, Snyder G J 2011 Adv. Energy Mater. 1 291

    [22]

    Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS. Nano. 4 513

    [23]

    Meng C Z, Liu C H, Fan S S 2010 Adv. Mater. 22 535

    [24]

    Zhang R Z, Chen W Y, Yang L N 2012 Acta Phys. Sin. 61 187201 (in Chinese) [张睿智, 陈文灏, 杨璐娜 2012 物理学报 61 187201]

  • [1] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [2] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [3] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [4] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [5] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [6] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [7] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [8] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [9] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [10] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒. 物理学报, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [11] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [12] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [13] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [14] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [15] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究. 物理学报, 2009, 58(3): 2018-2022. doi: 10.7498/aps.58.2018
    [17] 常艳玲, 张琦锋, 孙 晖, 吴锦雷. ZnO纳米线双绝缘层结构电致发光器件制备及特性研究. 物理学报, 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [18] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [19] 吴静静, 唐鑫, 龙飞, 唐壁玉. GGA+U方法研究ZnO孪晶界对VZn-NO-H复合体对p型导电性的影响. 物理学报, 2017, 66(13): 137101. doi: 10.7498/aps.66.137101
    [20] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2227
  • PDF下载量:  907
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-23
  • 修回日期:  2013-01-02
  • 刊出日期:  2013-05-05

Ag-ZnO纳米复合热电材料的制备及其性能研究

  • 1. 上海第二工业大学城市建设与环境工程学院, 上海 201209
    基金项目: 

    国家自然科学基金(批准号:51206103)、上海市教委科研创新项目(批准号:13YZ128)和上海市东方学者岗位支持计划资助的课题.

摘要: ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回