搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用传递熵对Lorenz系统和Walker环流信息传输方向的分析

张志森 龚志强 支蓉

利用传递熵对Lorenz系统和Walker环流信息传输方向的分析

张志森, 龚志强, 支蓉
PDF
导出引用
导出核心图
  • 基于传递熵方法, 分析Lorenz系统x, y, z三个分量之间的信息传输方向, 并应用温差与垂直速度的再分析资料对Walker环流进行分析. 研究结果表明: 1) 对于Lorenz系统而言, x与y分量之间, y是信息源, x是信息汇; y与z之间, y是信息源, z是信息汇; x与z分量之间的信息传递方向依赖于控制参数r; 且净信息传输的方向不随初值不同而改变; 2)在西太平洋地区, 温差对垂直速度的净信息输送占主导地位, 而赤道东太平洋地区则为垂直速度对温差的净信息输送占主导地位, 这与Walker环流物理机制是一致的, 且海陆热力差异对温差与垂直速度之间的信息输送影响较大; 3)冬季是温差与垂直速度之间的信息输送最强季节, 夏季和秋季次之, 春季最弱, 这可能是存在春季预报障碍的原因之一. 以上结果表明, 传递熵在气象领域有广阔的应用前景, 是测量动力学系统信息传递方向的一种有效方法和工具.
    • 基金项目: 国家自然科学基金(批准号: 41175067, 41205040)、国家重点基础研究发展计划(批准号: 2013CB430204, 2012CB955902)和公益性行业专项(批准号: GYHY201106016)资助的课题.
    [1]

    Chou J F 1997 Bull. Chin. Acad. Sci. 5 325 (in Chinese) [丑纪范 1997 中国科学院院刊 5 325]

    [2]

    Feng G L, Dong W J 2003 Chin. Phys. 13 413

    [3]

    Feng G L, Gong Z Q, Dong W J, Li J P 2005 Acta Phys. Sin. 54 5494 (in Chinese) [封国林, 龚志强, 董文杰, 李建平 2005 物理学报 54 5494]

    [4]

    Feng G L, Dong W J, Gong Z Q, Hou W, Wan S Q, Zhi R 2006 Nonlinear Theories and Methods on Spatial-Temporal Distribution of the Observational Data (Beijing: Metrological Press) p86 (in Chinese) [封国林, 董文杰, 龚志强, 侯威, 万仕全, 支蓉 2006 观测数据非线性时空分布理论和方法(北京: 气象出版社) 第86页]

    [5]

    Feng G L, Gao X Q, Dong W J, Li J P 2008 Chaos Soliton. Fract. 37 487

    [6]

    Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745

    [7]

    Li J P, Gao L 2006 J. Atmos. Sci. 30 834 (in Chinese) [李建平, 高丽 2006 大气科学 30 834]

    [8]

    Li J P, Wang X L 2003 Adv. Atmos. Sci. 20 661

    [9]

    Li J P, Chou J F 1997 Acta Meteor. Sin. 11 57

    [10]

    Li J P, Zeng Q C, Chou J F 2000 Sci. China E 30 550 (in Chinese) [李建平, 曾庆存, 丑纪范 2000 中国科学 (E辑) 30 550]

    [11]

    Dai X G, Wang P, Chou J F 2004 Proc. Nat. Sci. 14 73

    [12]

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Pyhs. Sin. 57 5351 (in Chinese) [龚志强, 周磊, 支蓉, 封国林2008 物理学报 57 5351]

    [13]

    Kullback S 1959 Information Theory and Statistics (New York: Wiley) p126

    [14]

    Schreiber T 2000 Phys. Rev. Lett. 85 461

    [15]

    Verdes P F 2005 Phys. Rev. E 72 026222

    [16]

    Liang X S, Kleeman R 2005 Phys. Rev. Lett. 95 244101

    [17]

    Andrew J M, John H 2007 Proc. Natl. Acad. Sci. 104 9558

    [18]

    Kleeman R 2007 J. Atmos. Sci. 64 1005

    [19]

    Materassi M, Wernik A, Yordanova E 2007 NPG 14 153

    [20]

    Lorenz E N 1963 J. Atmos. 20 130

    [21]

    Li A B, Zhang L F, Xiang J 2012 Acta Phys. Sin. 61 119202 (in Chinese) [黎爱兵, 张立凤, 项杰 2012 物理学报 61 119202]

    [22]

    Sikka D R, Gadgil S 1980 Mon. Wea. Rev. 108 1840

    [23]

    Christiansen B 2003 J. Clim. 16 3681

    [24]

    Walker G T 1923 Mem. Indian Meteor. Dept. 24 75

    [25]

    Walker G T 1924 Mem. Indian Meteor. Dept. 24 275

    [26]

    Walker G T, Bliss E W 1932 V. Mem. Roy Met. Soc. 4 53

    [27]

    Bjerknes J 1969 Mon. Wea. Rev. 97 163

    [28]

    Rasmusson E M, Carpenter T H 1982 Mon. Wea. Rev. 110 354

    [29]

    Bo Y Q, Wu H B 2008 Science and Technology Innovation Herald 31 5 (in Chinese) [薄燕青, 吴洪宝 2008 科技创新导报 31 5]

    [30]

    Lorenz E N 1976 Quart. Res. 6 495

    [31]

    Li C H, Wang D X, Liang J Y 2006 Chin. Sci. Bull. 51 596 (in Chinese) [李春晖, 王东晓, 梁建茵2006 科学通报 51 596]

    [32]

    Zhang Q Y, Wang Y 2006 Clim. Environ. Res. 11 487 (in Chinese) [张庆云, 王媛 2006 气候与环境研究 11 487]

    [33]

    Xu W C, Ma J S, Wang W 2005 Scientia Meteorol. Sin. 25 212 (in Chinese) [许武成, 马劲松, 王文 2005 气象科学 25 212]

    [34]

    Chan J C L 1985 Mon. Wea. Rev. 113 599

    [35]

    Ge X Y, Zhou X Q, Jiang S C 2002 J. Tropical Meteorol. 18 182 (in Chinese) [葛旭阳, 周霞琼, 蒋尚城 2002 热带气象学报 18 182]

  • [1]

    Chou J F 1997 Bull. Chin. Acad. Sci. 5 325 (in Chinese) [丑纪范 1997 中国科学院院刊 5 325]

    [2]

    Feng G L, Dong W J 2003 Chin. Phys. 13 413

    [3]

    Feng G L, Gong Z Q, Dong W J, Li J P 2005 Acta Phys. Sin. 54 5494 (in Chinese) [封国林, 龚志强, 董文杰, 李建平 2005 物理学报 54 5494]

    [4]

    Feng G L, Dong W J, Gong Z Q, Hou W, Wan S Q, Zhi R 2006 Nonlinear Theories and Methods on Spatial-Temporal Distribution of the Observational Data (Beijing: Metrological Press) p86 (in Chinese) [封国林, 董文杰, 龚志强, 侯威, 万仕全, 支蓉 2006 观测数据非线性时空分布理论和方法(北京: 气象出版社) 第86页]

    [5]

    Feng G L, Gao X Q, Dong W J, Li J P 2008 Chaos Soliton. Fract. 37 487

    [6]

    Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745

    [7]

    Li J P, Gao L 2006 J. Atmos. Sci. 30 834 (in Chinese) [李建平, 高丽 2006 大气科学 30 834]

    [8]

    Li J P, Wang X L 2003 Adv. Atmos. Sci. 20 661

    [9]

    Li J P, Chou J F 1997 Acta Meteor. Sin. 11 57

    [10]

    Li J P, Zeng Q C, Chou J F 2000 Sci. China E 30 550 (in Chinese) [李建平, 曾庆存, 丑纪范 2000 中国科学 (E辑) 30 550]

    [11]

    Dai X G, Wang P, Chou J F 2004 Proc. Nat. Sci. 14 73

    [12]

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Pyhs. Sin. 57 5351 (in Chinese) [龚志强, 周磊, 支蓉, 封国林2008 物理学报 57 5351]

    [13]

    Kullback S 1959 Information Theory and Statistics (New York: Wiley) p126

    [14]

    Schreiber T 2000 Phys. Rev. Lett. 85 461

    [15]

    Verdes P F 2005 Phys. Rev. E 72 026222

    [16]

    Liang X S, Kleeman R 2005 Phys. Rev. Lett. 95 244101

    [17]

    Andrew J M, John H 2007 Proc. Natl. Acad. Sci. 104 9558

    [18]

    Kleeman R 2007 J. Atmos. Sci. 64 1005

    [19]

    Materassi M, Wernik A, Yordanova E 2007 NPG 14 153

    [20]

    Lorenz E N 1963 J. Atmos. 20 130

    [21]

    Li A B, Zhang L F, Xiang J 2012 Acta Phys. Sin. 61 119202 (in Chinese) [黎爱兵, 张立凤, 项杰 2012 物理学报 61 119202]

    [22]

    Sikka D R, Gadgil S 1980 Mon. Wea. Rev. 108 1840

    [23]

    Christiansen B 2003 J. Clim. 16 3681

    [24]

    Walker G T 1923 Mem. Indian Meteor. Dept. 24 75

    [25]

    Walker G T 1924 Mem. Indian Meteor. Dept. 24 275

    [26]

    Walker G T, Bliss E W 1932 V. Mem. Roy Met. Soc. 4 53

    [27]

    Bjerknes J 1969 Mon. Wea. Rev. 97 163

    [28]

    Rasmusson E M, Carpenter T H 1982 Mon. Wea. Rev. 110 354

    [29]

    Bo Y Q, Wu H B 2008 Science and Technology Innovation Herald 31 5 (in Chinese) [薄燕青, 吴洪宝 2008 科技创新导报 31 5]

    [30]

    Lorenz E N 1976 Quart. Res. 6 495

    [31]

    Li C H, Wang D X, Liang J Y 2006 Chin. Sci. Bull. 51 596 (in Chinese) [李春晖, 王东晓, 梁建茵2006 科学通报 51 596]

    [32]

    Zhang Q Y, Wang Y 2006 Clim. Environ. Res. 11 487 (in Chinese) [张庆云, 王媛 2006 气候与环境研究 11 487]

    [33]

    Xu W C, Ma J S, Wang W 2005 Scientia Meteorol. Sin. 25 212 (in Chinese) [许武成, 马劲松, 王文 2005 气象科学 25 212]

    [34]

    Chan J C L 1985 Mon. Wea. Rev. 113 599

    [35]

    Ge X Y, Zhou X Q, Jiang S C 2002 J. Tropical Meteorol. 18 182 (in Chinese) [葛旭阳, 周霞琼, 蒋尚城 2002 热带气象学报 18 182]

  • [1] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析. 物理学报, 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [2] 廉 毅, 封国林, 支 蓉. 基于幂律尾指数研究不同尺度系统对降水的影响. 物理学报, 2007, 56(3): 1837-1842. doi: 10.7498/aps.56.1837
    [3] 王兴元, 王明军. 超混沌Lorenz系统. 物理学报, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [4] 支 蓉, 张增平, 王启光. Lorenz系统长程相关性研究. 物理学报, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [5] 李保生, 丁瑞强, 李建平, 钟权加. 强迫Lorenz系统的可预报性研究. 物理学报, 2017, 66(6): 060503. doi: 10.7498/aps.66.060503
    [6] 孙克辉, 杨静利, 丁家峰, 盛利元. 单参数Lorenz混沌系统的电路设计与实现. 物理学报, 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [7] 黎爱兵, 张立凤, 项杰. 外强迫对Lorenz系统初值可预报性的影响. 物理学报, 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [8] 贾红艳, 陈增强, 薛薇. 分数阶Lorenz系统的分析及电路实现 . 物理学报, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [9] 李小娟, 徐振源, 谢青春, 王兵. 单向耦合下两个不同Lorenz系统的广义同步. 物理学报, 2010, 59(3): 1532-1539. doi: 10.7498/aps.59.1532
    [10] 达朝究, 穆帅, 马德山, 于海鹏, 侯威, 龚志强. 基于Lorenz系统的数值天气转折期预报理论探索. 物理学报, 2014, 63(2): 029201. doi: 10.7498/aps.63.029201
    [11] 官国荣, 吴成茂, 贾倩. 一种改进的高性能Lorenz系统构造及其应用. 物理学报, 2015, 64(2): 020501. doi: 10.7498/aps.64.020501
    [12] 郭会军, 刘君华. 基于径向基函数神经网络的Lorenz混沌系统滑模控制. 物理学报, 2004, 53(12): 4080-4086. doi: 10.7498/aps.53.4080
    [13] 高新全, 丑纪范, 何文平, 封国林. 准周期外力驱动下Lorenz系统的动力学行为. 物理学报, 2006, 55(6): 3175-3179. doi: 10.7498/aps.55.3175
    [14] 唐国宁, 罗晓曙. 混沌系统的预测反馈控制. 物理学报, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [15] 王杰智, 陈增强, 袁著祉. 一个新的混沌系统及其性质研究. 物理学报, 2006, 55(8): 3956-3963. doi: 10.7498/aps.55.3956
    [16] 李玉鹏, 李 爽, 徐 伟, 李瑞红. 异结构系统混沌同步的新方法. 物理学报, 2006, 55(11): 5681-5687. doi: 10.7498/aps.55.5681
    [17] 宋运忠, 李文林. 不确定非线性系统混沌反控制. 物理学报, 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [18] 陆见光, 唐卷, 秦小林, 冯勇. 改进的保群算法及其在混沌系统中的应用. 物理学报, 2016, 65(11): 110501. doi: 10.7498/aps.65.110501
    [19] 陈增强, 袁著祉, 仓诗建. 一个新四维非自治超混沌系统的分析与电路实现. 物理学报, 2008, 57(3): 1493-1501. doi: 10.7498/aps.57.1493
    [20] 郝建红, 孙志华, 许海波. 干扰信号对两种混沌加密系统的影响及分析. 物理学报, 2007, 56(12): 6857-6864. doi: 10.7498/aps.56.6857
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1275
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-07
  • 修回日期:  2013-02-20
  • 刊出日期:  2013-06-05

利用传递熵对Lorenz系统和Walker环流信息传输方向的分析

  • 1. 兰州大学大气科学学院, 兰州 730000;
  • 2. 国家气候中心, 北京 100081
    基金项目: 

    国家自然科学基金(批准号: 41175067, 41205040)、国家重点基础研究发展计划(批准号: 2013CB430204, 2012CB955902)和公益性行业专项(批准号: GYHY201106016)资助的课题.

摘要: 基于传递熵方法, 分析Lorenz系统x, y, z三个分量之间的信息传输方向, 并应用温差与垂直速度的再分析资料对Walker环流进行分析. 研究结果表明: 1) 对于Lorenz系统而言, x与y分量之间, y是信息源, x是信息汇; y与z之间, y是信息源, z是信息汇; x与z分量之间的信息传递方向依赖于控制参数r; 且净信息传输的方向不随初值不同而改变; 2)在西太平洋地区, 温差对垂直速度的净信息输送占主导地位, 而赤道东太平洋地区则为垂直速度对温差的净信息输送占主导地位, 这与Walker环流物理机制是一致的, 且海陆热力差异对温差与垂直速度之间的信息输送影响较大; 3)冬季是温差与垂直速度之间的信息输送最强季节, 夏季和秋季次之, 春季最弱, 这可能是存在春季预报障碍的原因之一. 以上结果表明, 传递熵在气象领域有广阔的应用前景, 是测量动力学系统信息传递方向的一种有效方法和工具.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回