搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象

焦尚彬 任超 黄伟超 梁炎明

稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象

焦尚彬, 任超, 黄伟超, 梁炎明
PDF
导出引用
导出核心图
  • 本文将稳定噪声与双稳随机共振系统相结合, 研究了不同稳定噪声环境下高低频(均为多频)微弱信号检测的参数诱导随机共振现象, 探究了稳定噪声的特征指数(0 2)和对称参数 (-1 1)及随机共振系统参数a, b对共振输出效应的作用规律. 研究结果表明, 在不同分布的稳定噪声环境下, 通过调节系统参数a和b均可诱导随机共振来实现多个高、低频微弱信号的检测, 且存在多个a, b参数区间均可诱导随机共振, 这些区间不随或的变化而变化; 在高、低频微弱信号检测中, 或对随机共振输出效应的作用规律相同. 本研究结果将有助于稳定噪声环境下参数诱导随机共振现象中系统参数的合理选取, 进而可为实现基于随机共振的多频微弱信号检测方法的工程应用奠定基础.
    • 基金项目: 国家自然科学基金(批准号: 61203114)和教育部科学技术研究重点项目(批准号: 212169)资助的课题.
    [1]

    Hu N Q 2012 Stochastic Resonance Weak Characteristic Signal Detection Theory and Methods (Beijing: National Defense Industry Press) p60 (in Chinese) [胡茑庆 2012 随机共振微弱特征信号检测理论与方法 (北京: 国防工业出版社) 第60页]

    [2]

    Basso M, Dahleh M, Mezic I, Salapaka M V 1999 Proceedings of the American Control Conference San Diego, California, June, 1999 p3774

    [3]

    McNamara B, Wiesenfield K, Roy R 1998 Phys. Rev. Lett. 60 2626

    [4]

    Wellens T, Buchleitner A 2001 Chem. Phys. 268 313

    [5]

    Wang L Y, Yin C S, Cai W S, Pan Z X 2001 Chem. J. Chin. U. 22 762 (in Chinese) [王利亚, 蔡文生, 印春生, 潘忠孝 2001 高等学校化学学报 22 762]

    [6]

    Cardo P, Timothy Inglis J, Verschueren S, Collins J J, Merfeld D M, Rosenblum S, Buckley S, Moss F 1996 Nature 383 769

    [7]

    Ditzinger T, Stadler M, Struber D, Kelso J A S 2000 Phys. Rev. E 62 2566

    [8]

    Anishchenko V S, Safonova M A, Chua L O 1993 Journal of Circuit, System and Computer 3 553

    [9]

    Anishchenko V S, Safonova M A, Chua L O 1992 International Journal of Bifurcation and Chaos 2 397

    [10]

    Xu B H, Duan F B, Bao R H, Li J L 2002 Chaos, Solitons and fractals 13 633

    [11]

    Xu B H, Li J L, Duan F B, Zheng J Y 2003 Chaos, Solitons and fractals 16 93

    [12]

    Jiang S Q, Hou M J, Jia C H, He J R, Gu T X 2009 Chin. Phys. B 18 2667

    [13]

    Li J L, Xu B H 2006 Chin. Phys. 15 2867

    [14]

    Li J L 2009 Chin. Phys. B 18 5196

    [15]

    Leng Y G 2009 Acta Phys. Sin. 58 5196 (in Chinese) [冷永刚 2009 物理学报 58 5196]

    [16]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing-Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅 2004 统计信号处理–非高斯信号处理及其应用 (北京: 电子工业出版社) 第140页]

    [17]

    Dybiec B, Gudowska-Nowak E 2006 Acta Phys. Pol. B 37 1479

    [18]

    Srokowski T 2012 The European Physical Journal B 85 1

    [19]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 638]

    [20]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese) [张广丽, 吕希路, 康艳梅 2012 物理学报 61 040501]

    [21]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [22]

    Zeng L Z, Xu B H 2010 Journal of Physics A: Statistical Mechanics and its Applications 22 5128

    [23]

    Li J L, Xu B H 2006 Phys. A 361 11

    [24]

    Jiao S B, He T 2013 Computer Engineering and Applications (in Chinese) [焦尚彬, 何童 2013 计算机工程与应用]

    [25]

    Leccardi M 2005 ENOC’O5(Fifth EUROMECH Nonlinear Dynamics Conference), Mini Symposium on Fractional Derivatives and Their Applications Eindhoven, The Netherland 2005

    [26]

    Nolan J P 1999 Mathematical and Computer Modelling 29 229

    [27]

    Tang Y, Zou W, Lu J Q, Kurths J 2012 Phys. Rev. E 85 1539

    [28]

    Liang Y J, Chen W 2013 Signal Processing 93 242

    [29]

    Mitaim S, Kosko B l998 Process of The IEEE 86 2152

    [30]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [31]

    Gong D C, Qin G R, Hu G, Wen X D 1992 Sci. China A 8 828(in Chinese) [龚德纯, 秦光戎, 胡岗, 温孝东 1992 中国科学A辑 8 828]

    [32]

    Wan P, Zhan Y J, Li X C, Wang Y H 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪, 王永华 2011 物理学报 60 040502]

    [33]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [34]

    Leng Y G, Wang T Y, Guo Y, Wu Z Y 2007 Acta Phys. Sin. 56 30 (in Chinese) [冷永刚, 王太勇, 郭焱, 吴振勇 2007 物理学报 56 30]

    [35]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 0717 (in Chinese) [冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱 2004 物理学报 53 0717]

    [36]

    Yang D X, Hu Z, Yang Y M 2012 Acta Phys. Sin. 61 080501 (in Chinese) [杨定新, 胡政, 杨拥民 2012 物理学报 61 080501]

    [37]

    Lin M, Huang Y M 2006 Acta Phys. Sin. 55 3277 (in Chinese) [林敏, 黄咏梅 2006 物理学报 55 3277]

    [38]

    L Y, Wang C Y, Tian Y, Hou B 2010 China Academic Journal Electronic Publishing House 8 40 (in Chinese) [吕运, 王长悦, 田野, 侯彪 2010 机械与电子 8 40]

  • [1]

    Hu N Q 2012 Stochastic Resonance Weak Characteristic Signal Detection Theory and Methods (Beijing: National Defense Industry Press) p60 (in Chinese) [胡茑庆 2012 随机共振微弱特征信号检测理论与方法 (北京: 国防工业出版社) 第60页]

    [2]

    Basso M, Dahleh M, Mezic I, Salapaka M V 1999 Proceedings of the American Control Conference San Diego, California, June, 1999 p3774

    [3]

    McNamara B, Wiesenfield K, Roy R 1998 Phys. Rev. Lett. 60 2626

    [4]

    Wellens T, Buchleitner A 2001 Chem. Phys. 268 313

    [5]

    Wang L Y, Yin C S, Cai W S, Pan Z X 2001 Chem. J. Chin. U. 22 762 (in Chinese) [王利亚, 蔡文生, 印春生, 潘忠孝 2001 高等学校化学学报 22 762]

    [6]

    Cardo P, Timothy Inglis J, Verschueren S, Collins J J, Merfeld D M, Rosenblum S, Buckley S, Moss F 1996 Nature 383 769

    [7]

    Ditzinger T, Stadler M, Struber D, Kelso J A S 2000 Phys. Rev. E 62 2566

    [8]

    Anishchenko V S, Safonova M A, Chua L O 1993 Journal of Circuit, System and Computer 3 553

    [9]

    Anishchenko V S, Safonova M A, Chua L O 1992 International Journal of Bifurcation and Chaos 2 397

    [10]

    Xu B H, Duan F B, Bao R H, Li J L 2002 Chaos, Solitons and fractals 13 633

    [11]

    Xu B H, Li J L, Duan F B, Zheng J Y 2003 Chaos, Solitons and fractals 16 93

    [12]

    Jiang S Q, Hou M J, Jia C H, He J R, Gu T X 2009 Chin. Phys. B 18 2667

    [13]

    Li J L, Xu B H 2006 Chin. Phys. 15 2867

    [14]

    Li J L 2009 Chin. Phys. B 18 5196

    [15]

    Leng Y G 2009 Acta Phys. Sin. 58 5196 (in Chinese) [冷永刚 2009 物理学报 58 5196]

    [16]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing-Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅 2004 统计信号处理–非高斯信号处理及其应用 (北京: 电子工业出版社) 第140页]

    [17]

    Dybiec B, Gudowska-Nowak E 2006 Acta Phys. Pol. B 37 1479

    [18]

    Srokowski T 2012 The European Physical Journal B 85 1

    [19]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 638]

    [20]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese) [张广丽, 吕希路, 康艳梅 2012 物理学报 61 040501]

    [21]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [22]

    Zeng L Z, Xu B H 2010 Journal of Physics A: Statistical Mechanics and its Applications 22 5128

    [23]

    Li J L, Xu B H 2006 Phys. A 361 11

    [24]

    Jiao S B, He T 2013 Computer Engineering and Applications (in Chinese) [焦尚彬, 何童 2013 计算机工程与应用]

    [25]

    Leccardi M 2005 ENOC’O5(Fifth EUROMECH Nonlinear Dynamics Conference), Mini Symposium on Fractional Derivatives and Their Applications Eindhoven, The Netherland 2005

    [26]

    Nolan J P 1999 Mathematical and Computer Modelling 29 229

    [27]

    Tang Y, Zou W, Lu J Q, Kurths J 2012 Phys. Rev. E 85 1539

    [28]

    Liang Y J, Chen W 2013 Signal Processing 93 242

    [29]

    Mitaim S, Kosko B l998 Process of The IEEE 86 2152

    [30]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [31]

    Gong D C, Qin G R, Hu G, Wen X D 1992 Sci. China A 8 828(in Chinese) [龚德纯, 秦光戎, 胡岗, 温孝东 1992 中国科学A辑 8 828]

    [32]

    Wan P, Zhan Y J, Li X C, Wang Y H 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪, 王永华 2011 物理学报 60 040502]

    [33]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [34]

    Leng Y G, Wang T Y, Guo Y, Wu Z Y 2007 Acta Phys. Sin. 56 30 (in Chinese) [冷永刚, 王太勇, 郭焱, 吴振勇 2007 物理学报 56 30]

    [35]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 0717 (in Chinese) [冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱 2004 物理学报 53 0717]

    [36]

    Yang D X, Hu Z, Yang Y M 2012 Acta Phys. Sin. 61 080501 (in Chinese) [杨定新, 胡政, 杨拥民 2012 物理学报 61 080501]

    [37]

    Lin M, Huang Y M 2006 Acta Phys. Sin. 55 3277 (in Chinese) [林敏, 黄咏梅 2006 物理学报 55 3277]

    [38]

    L Y, Wang C Y, Tian Y, Hou B 2010 China Academic Journal Electronic Publishing House 8 40 (in Chinese) [吕运, 王长悦, 田野, 侯彪 2010 机械与电子 8 40]

  • [1] 焦尚彬, 孙迪, 刘丁, 谢国, 吴亚丽, 张青. 稳定噪声下一类周期势系统的振动共振. 物理学报, 2017, 66(10): 100501. doi: 10.7498/aps.66.100501
    [2] 张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析. 物理学报, 2015, 64(22): 220502. doi: 10.7498/aps.64.220502
    [3] 张广丽, 吕希路, 康艳梅. 稳定噪声环境下过阻尼系统中的参数诱导随机共振现象. 物理学报, 2012, 61(4): 040501. doi: 10.7498/aps.61.040501
    [4] 焦尚彬, 任超, 李鹏华, 张青, 谢国. 乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象. 物理学报, 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [5] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [6] 张莉, 元秀华, 武力. 脉冲信号被噪声调制的单模激光随机共振. 物理学报, 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [7] 徐 伟, 李 伟, 靳艳飞, 徐 猛. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [8] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [9] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振. 物理学报, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [10] 王太勇, 冷永刚. 二次采样用于随机共振从强噪声中提取弱信号的数值研究. 物理学报, 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [11] 李 蓉, 温孝东, 祝恒江. 利用随机共振在强噪声下提取信息信号. 物理学报, 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
    [12] 曹 力, 王 俊, 韩立波, 吴大进. 信号直接调制下色关联噪声驱动的单模激光的随机共振. 物理学报, 2004, 53(7): 2127-2132. doi: 10.7498/aps.53.2127
    [13] 张静静, 靳艳飞. 非高斯噪声驱动下非对称双稳系统的平均首次穿越时间与随机共振研究. 物理学报, 2011, 60(12): 120501. doi: 10.7498/aps.60.120501
    [14] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象. 物理学报, 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
    [15] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测. 物理学报, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [16] 焦尚彬, 杨蓉, 张青, 谢国. α稳定噪声驱动的非对称双稳随机共振现象. 物理学报, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [17] 肖方红, 闫桂荣, 韩雨航. 双稳随机动力系统信号调制噪声效应的数值分析. 物理学报, 2004, 53(2): 396-400. doi: 10.7498/aps.53.396
    [18] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [19] 冷永刚, 赖志慧, 范胜波, 高毓璣. 二维Duffing振子的大参数随机共振及微弱信号检测研究. 物理学报, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [20] 曹 力, 金国祥, 张良英. 偏置调幅波调制噪声的单模激光随机共振. 物理学报, 2007, 56(7): 3739-3743. doi: 10.7498/aps.56.3739
  • 引用本文:
    Citation:
计量
  • 文章访问数:  703
  • PDF下载量:  816
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-27
  • 修回日期:  2013-07-28
  • 刊出日期:  2013-11-05

稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象

  • 1. 西安理工大学自动化与信息工程学院, 西安 710048
    基金项目: 

    国家自然科学基金(批准号: 61203114)和教育部科学技术研究重点项目(批准号: 212169)资助的课题.

摘要: 本文将稳定噪声与双稳随机共振系统相结合, 研究了不同稳定噪声环境下高低频(均为多频)微弱信号检测的参数诱导随机共振现象, 探究了稳定噪声的特征指数(0 2)和对称参数 (-1 1)及随机共振系统参数a, b对共振输出效应的作用规律. 研究结果表明, 在不同分布的稳定噪声环境下, 通过调节系统参数a和b均可诱导随机共振来实现多个高、低频微弱信号的检测, 且存在多个a, b参数区间均可诱导随机共振, 这些区间不随或的变化而变化; 在高、低频微弱信号检测中, 或对随机共振输出效应的作用规律相同. 本研究结果将有助于稳定噪声环境下参数诱导随机共振现象中系统参数的合理选取, 进而可为实现基于随机共振的多频微弱信号检测方法的工程应用奠定基础.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回