搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期切换下Rayleigh振子的振荡行为及机理

陈章耀 雪增红 张春 季颖 毕勤胜

周期切换下Rayleigh振子的振荡行为及机理

陈章耀, 雪增红, 张春, 季颖, 毕勤胜
PDF
导出引用
导出核心图
  • 本文研究了自治与非自治电路系统在周期切换连接下的动力学行为及机理. 基于自治子系统平衡点和极限环的相应稳定性分析和切换系统李雅普诺夫指数的理论推导及数值计算. 讨论了两子系统在不同参数下的稳态解在周期切换连接下的复合系统的各种周期振荡行为,进而给出了切换系统随参数变化下的最大李雅普诺夫指数图及相应的分岔图,得到了切换系统在不同参数下呈现出周期振荡,概周期振荡和混沌振荡相互交替出现的复杂动力学行为并分析了其振荡机理. 给出了切换系统通过倍周期分岔,鞍结分岔以及环面分岔到达混沌的不同动力学演化过程.
    • 基金项目: 国家自然科学基金(批准号:21276115,11302086)、江苏省2013年普通高校研究生科研创新计划项目(批准号:CXZZ13-0653)和镇江市科技攻关项目(GY2012020,GY2013032)资助的课题.
    [1]

    Xie G M, Wang L 2005 J. Math. Anal. Appl. 305 277

    [2]

    Santis E D 2011 Syst. Control Lett. 60 807

    [3]

    Cheng D Z 2004 Syst. Control Lett. 51 79

    [4]

    Liu F, Song Y D 2011 Syst. Control Lett. 60 787

    [5]

    Hu H, Jiang B, Yang H 2013 Signal Processing 93 1804

    [6]

    Yildirim H, Frank G, Bernard B 2004 Automatica 40 1647

    [7]

    Dalvi A, Guay M 2009 Control Eng. Pract. 17 924

    [8]

    Wyczalek F A 2001 IEEE Aero. El. Sys. Mag. 16 15

    [9]

    Varaiya P P 1993 IEEE T. Automat. Contr. 38 195

    [10]

    Zhang W, Yu P 2000 J. Sound Vib. 231 145

    [11]

    Yu Y, Zhang C, Han X J, Bi Q S 2012 Acta Phys. Sin. 61 200507 (in Chinese) [余跃, 张春, 韩修静, 毕勤胜 2012 物理学报 61 200507]

    [12]

    Zhang C, Han X J, Bi Q S 2013 Nonlinear Dyn. 73 29

    [13]

    Zhang C, Han X J, Bi Q S 2012 Chin. Phys. B 21 100501

    [14]

    Margallo J G, Bejarano J D 1992 J. Sound Vib. 156 283

    [15]

    Ma X D, Bi Q S 2012 Acta Phys. Sin. 61 240506 (in Chinese) [马新东, 毕勤胜 2012 物理学报 61 240506]

    [16]

    Cveticanin L, Abd El-Latif G M, El-Naggar A M, Ismail G M 2008 J. Sound Vib. 318 580

    [17]

    Kousaka T, Ueta T, Ma Y, Kawakami H 2006 Chaos Solitons Fract. 27 1019

    [18]

    Wu T Y, Zhang Z D, Bi Q S 2012 Acta Phys. Sin. 61 070502 (in Chinese) [吴天一, 张正娣, 毕勤胜 2012 物理学报 61 070502]

  • [1]

    Xie G M, Wang L 2005 J. Math. Anal. Appl. 305 277

    [2]

    Santis E D 2011 Syst. Control Lett. 60 807

    [3]

    Cheng D Z 2004 Syst. Control Lett. 51 79

    [4]

    Liu F, Song Y D 2011 Syst. Control Lett. 60 787

    [5]

    Hu H, Jiang B, Yang H 2013 Signal Processing 93 1804

    [6]

    Yildirim H, Frank G, Bernard B 2004 Automatica 40 1647

    [7]

    Dalvi A, Guay M 2009 Control Eng. Pract. 17 924

    [8]

    Wyczalek F A 2001 IEEE Aero. El. Sys. Mag. 16 15

    [9]

    Varaiya P P 1993 IEEE T. Automat. Contr. 38 195

    [10]

    Zhang W, Yu P 2000 J. Sound Vib. 231 145

    [11]

    Yu Y, Zhang C, Han X J, Bi Q S 2012 Acta Phys. Sin. 61 200507 (in Chinese) [余跃, 张春, 韩修静, 毕勤胜 2012 物理学报 61 200507]

    [12]

    Zhang C, Han X J, Bi Q S 2013 Nonlinear Dyn. 73 29

    [13]

    Zhang C, Han X J, Bi Q S 2012 Chin. Phys. B 21 100501

    [14]

    Margallo J G, Bejarano J D 1992 J. Sound Vib. 156 283

    [15]

    Ma X D, Bi Q S 2012 Acta Phys. Sin. 61 240506 (in Chinese) [马新东, 毕勤胜 2012 物理学报 61 240506]

    [16]

    Cveticanin L, Abd El-Latif G M, El-Naggar A M, Ismail G M 2008 J. Sound Vib. 318 580

    [17]

    Kousaka T, Ueta T, Ma Y, Kawakami H 2006 Chaos Solitons Fract. 27 1019

    [18]

    Wu T Y, Zhang Z D, Bi Q S 2012 Acta Phys. Sin. 61 070502 (in Chinese) [吴天一, 张正娣, 毕勤胜 2012 物理学报 61 070502]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1462
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-17
  • 修回日期:  2013-10-03
  • 刊出日期:  2014-01-05

周期切换下Rayleigh振子的振荡行为及机理

  • 1. 江苏大学土木工程与力学学院, 镇江 212013
    基金项目: 

    国家自然科学基金(批准号:21276115,11302086)、江苏省2013年普通高校研究生科研创新计划项目(批准号:CXZZ13-0653)和镇江市科技攻关项目(GY2012020,GY2013032)资助的课题.

摘要: 本文研究了自治与非自治电路系统在周期切换连接下的动力学行为及机理. 基于自治子系统平衡点和极限环的相应稳定性分析和切换系统李雅普诺夫指数的理论推导及数值计算. 讨论了两子系统在不同参数下的稳态解在周期切换连接下的复合系统的各种周期振荡行为,进而给出了切换系统随参数变化下的最大李雅普诺夫指数图及相应的分岔图,得到了切换系统在不同参数下呈现出周期振荡,概周期振荡和混沌振荡相互交替出现的复杂动力学行为并分析了其振荡机理. 给出了切换系统通过倍周期分岔,鞍结分岔以及环面分岔到达混沌的不同动力学演化过程.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回