搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含时滞的非保守系统动力学的Noether对称性

张毅 金世欣

含时滞的非保守系统动力学的Noether对称性

张毅, 金世欣
PDF
导出引用
导出核心图
  • 提出并研究含时滞的非保守系统动力学的Noether对称性与守恒量. 首先,建立含时滞的非保守系统的Hamilton原理,得到含时滞的Lagrange方程;其次,基于含时滞的Hamilton作用量在依赖于广义速度的无限小群变换下的不变性,定义系统的Noether对称变换和准对称变换,建立Noether对称性的判据;最后,研究对称性与守恒量之间的关系,建立含时滞的非保守系统的Noether理论. 文末举例说明结果的应用.
    • 基金项目: 国家自然科学基金(批准号:10972151,11272227)资助的课题.
    [1]

    Hu H Y, Wang Z H 1999 Adv. Mech. 29 501 (in Chinese) [胡海岩, 王在华 1999 力学进展 29 501]

    [2]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [3]

    Wang Z H, Hu H Y 2013 Adv. Mech. 43 3 (in Chinese) [王在华, 胡海岩 2013 力学进展 43 3]

    [4]

    Djukić Dj S, Vujanović B 1975 Acta Mech. 23 17

    [5]

    Li Z P 1981 Acta Phys. Sin. 30 1699 (in Chinese) [李子平 1981 物理学报 30 1699]

    [6]

    Bahar L Y, Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [7]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [8]

    Xu X J, Mei F X 2005 Chin. Phys. 14 449

    [9]

    Luo S K 2007 Chin. Phys. Lett. 24 3017

    [10]

    Fu J L, Chen B Y, Chen L Q 2009 Phys. Lett. A 373 409

    [11]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [12]

    Bluman G W, Anco S C 2002 Symmety and Integration Methods for Differential Equations (New York: Springer-Verlag)

    [13]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Wang P, Wang X M, Fang J H 2009 Chin. Phys. Lett. 26 034501

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)]

    [17]

    Zhang Y 2002 Acta Phys. Sin. 51 461 (in Chinese) [张毅 2002 物理学报 51 461]

    [18]

    Long Z X, Zhang Y 2013 Acta Mech. Doi: 10.1007/s00707-013-0956-5

    [19]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社)]

    [20]

    Hojman S 1984 J. Phys. A: Math. Gen. 17 2399

    [21]

    Mei F X, Wu H B 2008 Phys. Lett. A 372 2141

    [22]

    Zhang Y 2011 Chin. Phys. B 20 034502

    [23]

    El’sgol’c L E 1964 Qualitative Methods in Mathematical Analysis (Providence: American Mathematical Society)

    [24]

    Hughes D K 1968 J. Optim. Theory Appl. 2 1

    [25]

    Palm W J, Schmitendorf W E 1974 J. Optim. Theory Appl. 14 599

    [26]

    Rosenblueth J F 1988 IMA J. Math. Control Inform. 5 125

    [27]

    Chan W L, Yung S P 1993 J. Optim. Theory Appl. 76 131

    [28]

    Lee C H, Yung S P 1996 J. Optim. Theory Appl. 88 157

    [29]

    Frederico G S F, Torres D F M 2012 Control Optim. 2 619

    [30]

    Mei F X, Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)

  • [1]

    Hu H Y, Wang Z H 1999 Adv. Mech. 29 501 (in Chinese) [胡海岩, 王在华 1999 力学进展 29 501]

    [2]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [3]

    Wang Z H, Hu H Y 2013 Adv. Mech. 43 3 (in Chinese) [王在华, 胡海岩 2013 力学进展 43 3]

    [4]

    Djukić Dj S, Vujanović B 1975 Acta Mech. 23 17

    [5]

    Li Z P 1981 Acta Phys. Sin. 30 1699 (in Chinese) [李子平 1981 物理学报 30 1699]

    [6]

    Bahar L Y, Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [7]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [8]

    Xu X J, Mei F X 2005 Chin. Phys. 14 449

    [9]

    Luo S K 2007 Chin. Phys. Lett. 24 3017

    [10]

    Fu J L, Chen B Y, Chen L Q 2009 Phys. Lett. A 373 409

    [11]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [12]

    Bluman G W, Anco S C 2002 Symmety and Integration Methods for Differential Equations (New York: Springer-Verlag)

    [13]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Wang P, Wang X M, Fang J H 2009 Chin. Phys. Lett. 26 034501

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)]

    [17]

    Zhang Y 2002 Acta Phys. Sin. 51 461 (in Chinese) [张毅 2002 物理学报 51 461]

    [18]

    Long Z X, Zhang Y 2013 Acta Mech. Doi: 10.1007/s00707-013-0956-5

    [19]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社)]

    [20]

    Hojman S 1984 J. Phys. A: Math. Gen. 17 2399

    [21]

    Mei F X, Wu H B 2008 Phys. Lett. A 372 2141

    [22]

    Zhang Y 2011 Chin. Phys. B 20 034502

    [23]

    El’sgol’c L E 1964 Qualitative Methods in Mathematical Analysis (Providence: American Mathematical Society)

    [24]

    Hughes D K 1968 J. Optim. Theory Appl. 2 1

    [25]

    Palm W J, Schmitendorf W E 1974 J. Optim. Theory Appl. 14 599

    [26]

    Rosenblueth J F 1988 IMA J. Math. Control Inform. 5 125

    [27]

    Chan W L, Yung S P 1993 J. Optim. Theory Appl. 76 131

    [28]

    Lee C H, Yung S P 1996 J. Optim. Theory Appl. 88 157

    [29]

    Frederico G S F, Torres D F M 2012 Control Optim. 2 619

    [30]

    Mei F X, Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)

  • [1] 张 毅. 广义经典力学系统的对称性与Mei守恒量. 物理学报, 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
    [2] 梅凤翔, 张 毅. 约束对Birkhoff系统Noether对称性和守恒量的影响. 物理学报, 2004, 53(8): 2419-2423. doi: 10.7498/aps.53.2419
    [3] 罗绍凯. Hamilton系统的Mei对称性、Noether对称性和Lie对称性. 物理学报, 2003, 52(12): 2941-2944. doi: 10.7498/aps.52.2941
    [4] 楼智美. 一类多自由度线性耦合系统的对称性与守恒量研究. 物理学报, 2007, 56(5): 2475-2478. doi: 10.7498/aps.56.2475
    [5] 顾书龙, 张宏彬. Vacco动力学方程的Mei对称性、Lie对称性和Noether对称性. 物理学报, 2005, 54(9): 3983-3986. doi: 10.7498/aps.54.3983
    [6] 葛伟宽. Chaplygin系统的Noether对称性与形式不变性. 物理学报, 2002, 51(5): 939-942. doi: 10.7498/aps.51.939
    [7] 梅凤翔, 张 毅. 非保守力与非完整约束对Lagrange系统Noether对称性的影响. 物理学报, 2004, 53(3): 661-668. doi: 10.7498/aps.53.661
    [8] 梅凤翔, 郭永新, 罗绍凯. 非完整系统的Noether对称性与Hojman守恒量. 物理学报, 2004, 53(5): 1270-1275. doi: 10.7498/aps.53.1270
    [9] 李显辉, 郑世旺, 傅景礼. 机电动力系统的动量依赖对称性和非Noether守恒量. 物理学报, 2005, 54(12): 5511-5516. doi: 10.7498/aps.54.5511
    [10] 张 毅. 单面完整约束力学系统的形式不变性. 物理学报, 2004, 53(2): 331-336. doi: 10.7498/aps.53.331
    [11] 刘畅, 陈向炜, 赵永红. 动力学系统Noether对称性的几何表示. 物理学报, 2010, 59(1): 11-14. doi: 10.7498/aps.59.11
    [12] 方建会, 闫向宏, 陈培胜. 相对论力学系统的形式不变性与Noether对称性. 物理学报, 2003, 52(7): 1561-1564. doi: 10.7498/aps.52.1561
    [13] 董文山, 黄宝歆. 广义非完整力学系统的Lie对称性与Noether守恒量. 物理学报, 2010, 59(1): 1-6. doi: 10.7498/aps.59.1
    [14] 楼智美. 一维减幅-增幅谐振子的守恒量与对称性. 物理学报, 2008, 57(3): 1307-1310. doi: 10.7498/aps.57.1307
    [15] 梁景辉, 李元成, 张毅. 一类非完整奇异系统的Lie对称性与守恒量. 物理学报, 2002, 51(10): 2186-2190. doi: 10.7498/aps.51.2186
    [16] 楼智美. 均匀磁场中二维各向同性带电谐振子的守恒量与对称性研究. 物理学报, 2013, 62(22): 220201. doi: 10.7498/aps.62.220201
    [17] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量. 物理学报, 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [18] 廖永潘, 彭 勇, 方建会. 相空间中力学系统的两类Mei对称性及守恒量. 物理学报, 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [19] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量. 物理学报, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [20] 张毅. 相对论性力学系统的Birkhoff对称性与守恒量. 物理学报, 2012, 61(21): 214501. doi: 10.7498/aps.61.214501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  651
  • PDF下载量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-08-05
  • 刊出日期:  2013-12-05

含时滞的非保守系统动力学的Noether对称性

  • 1. 苏州科技学院土木工程学院, 苏州 215011;
  • 2. 苏州科技学院数理学院, 苏州 215009
    基金项目: 

    国家自然科学基金(批准号:10972151,11272227)资助的课题.

摘要: 提出并研究含时滞的非保守系统动力学的Noether对称性与守恒量. 首先,建立含时滞的非保守系统的Hamilton原理,得到含时滞的Lagrange方程;其次,基于含时滞的Hamilton作用量在依赖于广义速度的无限小群变换下的不变性,定义系统的Noether对称变换和准对称变换,建立Noether对称性的判据;最后,研究对称性与守恒量之间的关系,建立含时滞的非保守系统的Noether理论. 文末举例说明结果的应用.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回