搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响

徐大庆 张义门 娄永乐 童军

热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响

徐大庆, 张义门, 娄永乐, 童军
PDF
导出引用
  • 通过Mn离子注入非故意掺杂GaN外延层制备了GaN:Mn薄膜,并研究了退火温度对GaN:Mn薄膜的微结构、光学及磁学特性的影响. 对不同退火温度处理后的GaN:Mn薄膜的拉曼谱测试显示,出现了由与离子注入相关的缺陷的局域振动(LV)和(Ga,Mn)N中Mn离子的LV引起的新的声子模. 在GaN:Mn薄膜的光致发光谱中观察到位于2.16,2.53和2.92 eV 处的三个新发光峰(带),其中位于2.16 eV处的新发光带不能排除来自Mn相关辐射复合的贡献. 对GaN:Mn薄膜的霍尔测试显示,退火处理后样品表现出n型体材料特征. 对GaN:Mn薄膜的振动样品磁强计测试显示,GaN:Mn薄膜具有室温铁磁性,其强弱受Mn相关杂质带中参与调节磁相互作用的空穴浓度的影响.
    • 基金项目: 陕西省教育厅科研计划项目(批准号:11JK0912)、西安科技大学科研培育基金(批准号:2010011)、西安科技大学博士科研启动基金(批准号:2010QDJ029)、国防预研基金(批准号:9140A08040410DZ106)和中央高等学校基本科研业务费(批准号:JY10000925005)资助的课题.
    [1]

    Ohno H, Manakata H, Penney T, von Molnár S, Chang L L 1992 Phys. Rev. Lett. 68 2664

    [2]

    Dietl T, Haury A, d'Aubigné Y M 1997 Phys. Rev. B 55 R3347

    [3]

    Ohno H 1998 Science 281 951

    [4]

    Hayashi T, Tanaka M, Seto K, Nishinaga T, Ando K 1997 Appl. Phys. Lett. 71 1825

    [5]

    Dietl T 2010 Nat. Mater. 9 965

    [6]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Reed M L, El-Masry N A, Stadelmaier H H, Ritums M K, Reed M J, Parker C A, Roberts J C, Bedair S M 2001 Appl. Phys. Lett. 79 3473

    [9]

    Husnain G, Yao S D, Ahmadb I, Rafique H M, Mahmoodd A 2012 J. Magn. Magn. Mater. 324 797

    [10]

    Kronik L, Jain M, Chelikowsky J R 2002 Phys. Rev. B 66 041203(R)

    [11]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [12]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [13]

    Huang R T, Hsu C F, Kai J J, Chen F R, Chin T S 2005 Appl. Phys. Lett. 87 202507

    [14]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [15]

    Xing H Y, Fan G H, Yang X L, Zhang G Y 2010 Acta Phys. Sin. 59 504 (in Chinese) [邢海英, 范广涵, 杨学林, 张国义 2010 物理学报59 504]

    [16]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C 2009 Chin. Phys. B 18 1637

    [17]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C, L H L, Tang X Y, Wang Y H 2008 Chin. Phys. B 17 4648

    [18]

    Reshchikov M A, Shahedipour F, Korotkov R Y, Wessels B W, Ulmer M P 2000 J. Appl. Phys. 87 3351

    [19]

    Korotkov R Y, Gregie J M, Wessels B W 2002 Appl. Phys. Lett. 80 1731

    [20]

    Kucheyev S O, Williams J S, Pearton S J 2001 Mater. Sci. Eng. R 33 51

    [21]

    Reshchikov M A, Morkoç H, Park S S, Lee K Y 2001 Appl. Phys. Lett. 78 3041

    [22]

    Neugebauer J, van de Walle C G 1996 Appl. Phys. Lett. 69 503

    [23]

    Mattila T, Nieminen R M 1997 Phys. Rev. B 55 9571

    [24]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301

    [25]

    Theodoropoulou M A N, Hebard A F, Overberg M E, Abernathy C R, Peartona S J, Chu S N G, Wilson R G 2001 Appl. Phys. Lett. 78 3475

  • [1]

    Ohno H, Manakata H, Penney T, von Molnár S, Chang L L 1992 Phys. Rev. Lett. 68 2664

    [2]

    Dietl T, Haury A, d'Aubigné Y M 1997 Phys. Rev. B 55 R3347

    [3]

    Ohno H 1998 Science 281 951

    [4]

    Hayashi T, Tanaka M, Seto K, Nishinaga T, Ando K 1997 Appl. Phys. Lett. 71 1825

    [5]

    Dietl T 2010 Nat. Mater. 9 965

    [6]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Reed M L, El-Masry N A, Stadelmaier H H, Ritums M K, Reed M J, Parker C A, Roberts J C, Bedair S M 2001 Appl. Phys. Lett. 79 3473

    [9]

    Husnain G, Yao S D, Ahmadb I, Rafique H M, Mahmoodd A 2012 J. Magn. Magn. Mater. 324 797

    [10]

    Kronik L, Jain M, Chelikowsky J R 2002 Phys. Rev. B 66 041203(R)

    [11]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [12]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [13]

    Huang R T, Hsu C F, Kai J J, Chen F R, Chin T S 2005 Appl. Phys. Lett. 87 202507

    [14]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [15]

    Xing H Y, Fan G H, Yang X L, Zhang G Y 2010 Acta Phys. Sin. 59 504 (in Chinese) [邢海英, 范广涵, 杨学林, 张国义 2010 物理学报59 504]

    [16]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C 2009 Chin. Phys. B 18 1637

    [17]

    Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C, L H L, Tang X Y, Wang Y H 2008 Chin. Phys. B 17 4648

    [18]

    Reshchikov M A, Shahedipour F, Korotkov R Y, Wessels B W, Ulmer M P 2000 J. Appl. Phys. 87 3351

    [19]

    Korotkov R Y, Gregie J M, Wessels B W 2002 Appl. Phys. Lett. 80 1731

    [20]

    Kucheyev S O, Williams J S, Pearton S J 2001 Mater. Sci. Eng. R 33 51

    [21]

    Reshchikov M A, Morkoç H, Park S S, Lee K Y 2001 Appl. Phys. Lett. 78 3041

    [22]

    Neugebauer J, van de Walle C G 1996 Appl. Phys. Lett. 69 503

    [23]

    Mattila T, Nieminen R M 1997 Phys. Rev. B 55 9571

    [24]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301

    [25]

    Theodoropoulou M A N, Hebard A F, Overberg M E, Abernathy C R, Peartona S J, Chu S N G, Wilson R G 2001 Appl. Phys. Lett. 78 3475

  • [1] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响. 物理学报, 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [2] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [3] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [4] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变. 物理学报, 2006, 55(3): 1453-1457. doi: 10.7498/aps.55.1453
    [5] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
    [6] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [7] 叶颖惠, 吕斌, 张维广, 黄宏文, 叶志镇. Mn-Na共掺ZnO非极性薄膜的结构及其光电磁性能研究. 物理学报, 2012, 61(3): 036701. doi: 10.7498/aps.61.036701
    [8] 潘孝军, 张振兴, 王 涛, 李 晖, 谢二庆. 溅射制备纳米晶GaN∶Er薄膜的室温发光特性. 物理学报, 2008, 57(6): 3786-3790. doi: 10.7498/aps.57.3786
    [9] 周丽宏, 张崇宏, 李炳生, 杨义涛, 宋 银. 注入Ar+的蓝宝石晶体退火前后光致发光谱的分析. 物理学报, 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [10] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [11] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [12] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [13] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [14] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [15] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [16] 郑玉龙, 甄聪棉, 马丽, 李秀玲, 潘成福, 侯登录. Si-Al2O3复合薄膜的室温铁磁性. 物理学报, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [17] 宋淑芳, 周生强, 陈维德, 朱建军, 陈长勇, 许振嘉. 掺铒GaN薄膜的背散射/沟道分析和光致发光研究. 物理学报, 2003, 52(10): 2558-2562. doi: 10.7498/aps.52.2558
    [18] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [19] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [20] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1173
  • PDF下载量:  720
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-09
  • 修回日期:  2013-10-31
  • 刊出日期:  2014-02-05

热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响

  • 1. 西安科技大学电气与控制工程学院, 西安 710054;
  • 2. 西安电子科技大学微电子学院, 宽禁带半导体材料与器件教育部重点实验室, 西安 710071
    基金项目: 

    陕西省教育厅科研计划项目(批准号:11JK0912)、西安科技大学科研培育基金(批准号:2010011)、西安科技大学博士科研启动基金(批准号:2010QDJ029)、国防预研基金(批准号:9140A08040410DZ106)和中央高等学校基本科研业务费(批准号:JY10000925005)资助的课题.

摘要: 通过Mn离子注入非故意掺杂GaN外延层制备了GaN:Mn薄膜,并研究了退火温度对GaN:Mn薄膜的微结构、光学及磁学特性的影响. 对不同退火温度处理后的GaN:Mn薄膜的拉曼谱测试显示,出现了由与离子注入相关的缺陷的局域振动(LV)和(Ga,Mn)N中Mn离子的LV引起的新的声子模. 在GaN:Mn薄膜的光致发光谱中观察到位于2.16,2.53和2.92 eV 处的三个新发光峰(带),其中位于2.16 eV处的新发光带不能排除来自Mn相关辐射复合的贡献. 对GaN:Mn薄膜的霍尔测试显示,退火处理后样品表现出n型体材料特征. 对GaN:Mn薄膜的振动样品磁强计测试显示,GaN:Mn薄膜具有室温铁磁性,其强弱受Mn相关杂质带中参与调节磁相互作用的空穴浓度的影响.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回