搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声悬浮过程的格子Boltzmann方法研究

解文军 滕鹏飞

声悬浮过程的格子Boltzmann方法研究

解文军, 滕鹏飞
PDF
导出引用
  • 采用轴对称多弛豫时间格子Boltzmann (LB)方法,研究了圆柱形封闭谐振腔中圆盘形样品的声悬浮过程. 模拟结果表明,(001) 模式下谐振腔的共振长度L=0.499λ,在谐振腔中心引入样品后共振漂移量δL≈-0.9,这与线性声学理论计算结果基本相符. 声悬浮力的LB模拟过程包含了黏滞性效应和共振漂移效应,所获得的模拟结果与理论公式计算值在量值上一致,而且其在细节上更符合实验现象. 此外,LB模拟还揭示出了声悬浮过程中的声压波形畸变、声流和声辐射压等非线性声学效应.
    • 基金项目: 国家自然科学基金(批准号:51071126,51371148)资助的课题.
    [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Xie W J, Cao C D, L Y J, Hong Z Y, Wei B 2006 Appl. Phys. Lett. 89 214102

    [3]

    Weber J K R, Benmore C J, Tailor A N, Tumber S K, Neuefeind J, Cherry B, Yarger J L, Mou Q, Weber W, Byrn S R 2013 Chem. Phys. 424 89

    [4]

    Radnik J, Bentrup U, Leiterer J, Brckner A, Emmerling F 2011 Chem. Mater. 23 5425

    [5]

    Wolf S E, Leiterer J, Kappl M, Emmerling F, Tremel W 2008 J. Am. Chem. Soc. 130 12342

    [6]

    Lee S, Ohsaka K, Rednikov A, Sadhal S S 2006 Ann. N. Y. Acad. Sci. 1077 75

    [7]

    Tuckermann R, Bauerecker S, Cammenga H K 2005 Int. J. Thermophys. 26 1583

    [8]

    Saha A, Basu S, Suryanarayana C, Kumar R 2010 Int. J. Heat Mass Transfer 53 5663

    [9]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 物理学报 61 134302]

    [10]

    Brotton S J, Kaiser R I 2013 Rev. Sci. Instrum. 84 055114

    [11]

    Chainani E T, Ngo K T, Scheeline A 2013 Anal. Chem. 85 2500

    [12]

    Benmore C J, Weber J K R 2011 Phys. Rev. X 1 011004

    [13]

    Benmore C J, Weber J K R, Tailor A N, Cherry B R, Yarger J L, Mou Q S, Weber W, Neuefeind J, Byrn S R 2013 J. Pharm. Sci. 102 1290

    [14]

    Trinh E H, Robeyal J L 1994 Phys. Fluids 6 3567

    [15]

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302 (in Chinese) [杜人君, 解文军 2011 物理学报 60 114302]

    [16]

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) p1 (in Chinese) [钱祖文 2009 非线性声学 (北京: 科学出版社) 第1页]

    [17]

    Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439

    [18]

    Chen S, Doolen G 1998 Annu. Rev. Fluid Mech. 30 329

    [19]

    Benzi R, Succi S, Vergassola M 1992 Phys. Rep. 222 145

    [20]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [21]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [22]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 物理学报 61 150501]

    [23]

    Buick J M, Buckley C L, Greated C A, Gilbert J 2000 J. Phys. A: Math. Gen. 33 3917

    [24]

    Haydock D, Yeomans J M 2001 J. Phys. A: Math. Gen. 34 5201

    [25]

    Haydock D 2005 J. Phys. A: Math. Gen. 38 3265

    [26]

    Barrios G, Rechtman R 2008 J. Fluid Mech. 596 191

    [27]

    Halliday I, Hammond L A, Care C M, Good K, Stevens A 2001 Phys. Rev. E 64 011208

    [28]

    Mukherjee S, Abraham J 2007 Phys. Rev. E 75 026701

    [29]

    Li Q, He Y L, Tang G H, Tao W Q 2010 Phys. Rev. E 81 056707

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [31]

    Landau L D, Lifshitz E M 1999 Fluid Mechanics (2nd Ed.) (Beijing: World Publishing Corporation) p45

    [32]

    Saenger R A, Hudson G E 1960 J. Acoust. Soc. Am. 32 961

    [33]

    Leung E, Lee C P, Jacobi N, Wang T G 1982 J. Acoust. Soc. Am. 72 615

    [34]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [35]

    Xie W J, Wei B 2007 Chin. Phys. Lett. 24 135

  • [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Xie W J, Cao C D, L Y J, Hong Z Y, Wei B 2006 Appl. Phys. Lett. 89 214102

    [3]

    Weber J K R, Benmore C J, Tailor A N, Tumber S K, Neuefeind J, Cherry B, Yarger J L, Mou Q, Weber W, Byrn S R 2013 Chem. Phys. 424 89

    [4]

    Radnik J, Bentrup U, Leiterer J, Brckner A, Emmerling F 2011 Chem. Mater. 23 5425

    [5]

    Wolf S E, Leiterer J, Kappl M, Emmerling F, Tremel W 2008 J. Am. Chem. Soc. 130 12342

    [6]

    Lee S, Ohsaka K, Rednikov A, Sadhal S S 2006 Ann. N. Y. Acad. Sci. 1077 75

    [7]

    Tuckermann R, Bauerecker S, Cammenga H K 2005 Int. J. Thermophys. 26 1583

    [8]

    Saha A, Basu S, Suryanarayana C, Kumar R 2010 Int. J. Heat Mass Transfer 53 5663

    [9]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 物理学报 61 134302]

    [10]

    Brotton S J, Kaiser R I 2013 Rev. Sci. Instrum. 84 055114

    [11]

    Chainani E T, Ngo K T, Scheeline A 2013 Anal. Chem. 85 2500

    [12]

    Benmore C J, Weber J K R 2011 Phys. Rev. X 1 011004

    [13]

    Benmore C J, Weber J K R, Tailor A N, Cherry B R, Yarger J L, Mou Q S, Weber W, Neuefeind J, Byrn S R 2013 J. Pharm. Sci. 102 1290

    [14]

    Trinh E H, Robeyal J L 1994 Phys. Fluids 6 3567

    [15]

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302 (in Chinese) [杜人君, 解文军 2011 物理学报 60 114302]

    [16]

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) p1 (in Chinese) [钱祖文 2009 非线性声学 (北京: 科学出版社) 第1页]

    [17]

    Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439

    [18]

    Chen S, Doolen G 1998 Annu. Rev. Fluid Mech. 30 329

    [19]

    Benzi R, Succi S, Vergassola M 1992 Phys. Rep. 222 145

    [20]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [21]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [22]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 物理学报 61 150501]

    [23]

    Buick J M, Buckley C L, Greated C A, Gilbert J 2000 J. Phys. A: Math. Gen. 33 3917

    [24]

    Haydock D, Yeomans J M 2001 J. Phys. A: Math. Gen. 34 5201

    [25]

    Haydock D 2005 J. Phys. A: Math. Gen. 38 3265

    [26]

    Barrios G, Rechtman R 2008 J. Fluid Mech. 596 191

    [27]

    Halliday I, Hammond L A, Care C M, Good K, Stevens A 2001 Phys. Rev. E 64 011208

    [28]

    Mukherjee S, Abraham J 2007 Phys. Rev. E 75 026701

    [29]

    Li Q, He Y L, Tang G H, Tao W Q 2010 Phys. Rev. E 81 056707

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [31]

    Landau L D, Lifshitz E M 1999 Fluid Mechanics (2nd Ed.) (Beijing: World Publishing Corporation) p45

    [32]

    Saenger R A, Hudson G E 1960 J. Acoust. Soc. Am. 32 961

    [33]

    Leung E, Lee C P, Jacobi N, Wang T G 1982 J. Acoust. Soc. Am. 72 615

    [34]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [35]

    Xie W J, Wei B 2007 Chin. Phys. Lett. 24 135

  • [1] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究. 物理学报, 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
    [2] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固. 物理学报, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [3] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [4] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究. 物理学报, 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [5] 田 强, 徐 权. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [6] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [7] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [8] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [9] 黄乒花, 刘慕仁, 孔令江, 李华兵. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [10] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析. 物理学报, 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [11] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [12] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [15] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [16] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [17] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [18] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [19] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法. 物理学报, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [20] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
  • 引用本文:
    Citation:
计量
  • 文章访问数:  903
  • PDF下载量:  534
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-17
  • 修回日期:  2014-03-13
  • 刊出日期:  2014-08-05

声悬浮过程的格子Boltzmann方法研究

  • 1. 西北工业大学空间应用物理与化学教育部重点实验室, 西安 710072
    基金项目: 

    国家自然科学基金(批准号:51071126,51371148)资助的课题.

摘要: 采用轴对称多弛豫时间格子Boltzmann (LB)方法,研究了圆柱形封闭谐振腔中圆盘形样品的声悬浮过程. 模拟结果表明,(001) 模式下谐振腔的共振长度L=0.499λ,在谐振腔中心引入样品后共振漂移量δL≈-0.9,这与线性声学理论计算结果基本相符. 声悬浮力的LB模拟过程包含了黏滞性效应和共振漂移效应,所获得的模拟结果与理论公式计算值在量值上一致,而且其在细节上更符合实验现象. 此外,LB模拟还揭示出了声悬浮过程中的声压波形畸变、声流和声辐射压等非线性声学效应.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回