搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性

周丽 魏源 黄志祥 吴先良

引用本文:
Citation:

基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性

周丽, 魏源, 黄志祥, 吴先良

Study on the electromagnetic properties of thin-film solar cell grown with graphene using FDFD method

Zhou Li, Wei Yuan, Huang Zhi-Xiang, Wu Xian-Liang
PDF
导出引用
  • 近年来, 基于非晶硅太阳能电池在提高能量转换效率和降低成本等方面的研究越来越受到学者的关注, 其中, 太阳能电池吸收峰值的位置, 反映了电池对该频点及其附近频谱光波吸收具有较好的效果. 然而, 非晶硅太阳能电池的吸收峰位置主要是由非晶硅和金属电极的参数决定, 很难实现位置的可调以及进一步的吸收效率增加. 所以, 在周期结构太阳能电池的金属光栅结构中引入单层石墨烯薄膜, 借助石墨烯的特殊光电特性, 即介电常数可通过改变化学势μc来调谐, 并结合频域有限差分方法的数值模拟, 理论上实现了对太阳能电池能量吸收峰位置的调谐. 针对石墨烯电导率的虚部出现奇异点, 本文提出了采用数值拟合予以解决奇异点的方法, 数值结果表明近似表达式的最大绝对误差为0.8%. 本设计结构的理论结果可为实际有机薄膜太阳能电池在工作频段的调节和优化提供理论基础和技术支撑.
    In recent years amorphous silicon solar cells have been receiving a great deal of interest due to their high energy conversion efficiency and low cost. The positions of absorption peak reflect the good absorption performance at specific frequency point or nearby spectra. However, the absorption peaks of amorphous silicon solar cell which are mainly determined by the properties of amorphous silicon and metal electrode, cannot be tuned. And the absorption efficiency can not be further enhanced also. Therefore, monolayer graphene film will be employed in the solar cells with periodic structure due to its remarkable electro-optic properties. With a suitable chemical potential applied, the dielectric constant of graphene can be tuned. This design mainly aims to tune the position of the absorption peak based on the graphene by using finite-difference frequency-domain method. Also, an approximate fitted function is developed in order to overcome the singularity in the exact expression. Numerical results show that the approximate closed form expression generates results within a maximum absolute error of 0.8%. Theoretical results provide the realistic organic thin-film solar cells with theoretical basis and technical support.
    • 基金项目: 国家自然科学基金项目(批准号: 51277001, 61101064, 61471001)、教育部新世纪优秀人才基金(批准号: NCET-12-0596)、教育部博士点基金项目(批准号:20123401110009)、安徽省杰出青年基金(批准号:1108085J01)和安徽省高校重点项目(批准号: KJ2012A103)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51277001, 61101064, 61471001), the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-12-0596), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123401110009), the Fund for Distinguished Young Scholars of Anhui Province, China (Grant No. 1108085J01), and the Key Program of the Higher Educations of Anhui Province, China (Grant No. KJ2012A103).
    [1]

    Carlson D E, Wronski C R 1976 Appl. Phys. Lett. 28 671

    [2]

    Sha W E I, Choy W C H, Chew W C 2010 Opt. Express 18 5993

    [3]

    Wei Y, Xiao F, Wu B, Huang Z X, Wu X L 2014 Acta. Photon. Sin. 43 62 (in Chinese) [魏源, 肖峰, 吴博, 黄志祥, 吴先良 2014 光子学报 43 62]

    [4]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666

    [5]

    Bao Q L, Kian P L 2012 ACS Nano 6 3677

    [6]

    Wu H Q 2013 Chin. Phys. B 22 098106

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [8]

    Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [9]

    Liu M, Yin X B, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [10]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [11]

    Schwierz F 2010 Nat Nanotechnol 5 487

    [12]

    Wu L, Chu H S, Koh W S, Li E P 2010 Opt. Express 18 14395

    [13]

    Vakil A, Engheta N 2011 Science 10 1291

    [14]

    Peierls R 1935 Annals de l'I. H. P. 5 177

    [15]

    Landau L 1937 Phys. Z. Sowjetunion 11 26

    [16]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [17]

    beilenhoff K, Heinrich W, Hartnagel H L 1992 IEEE T. Microw. Theory. 40 540

    [18]

    Simsek E 2013 Opt. Lett. 38 1437

    [19]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [20]

    Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York: Van Nostrand Reinhold) p121

    [21]

    Wang H, Huang Z X, Wu X L, Ren X G 2011 Chin. Phys. B 20 114701

    [22]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 物理学报 61 194701]

    [23]

    Ren X G, Sha W E I, Choy W C H 2013 Opt. Express 21 31824

  • [1]

    Carlson D E, Wronski C R 1976 Appl. Phys. Lett. 28 671

    [2]

    Sha W E I, Choy W C H, Chew W C 2010 Opt. Express 18 5993

    [3]

    Wei Y, Xiao F, Wu B, Huang Z X, Wu X L 2014 Acta. Photon. Sin. 43 62 (in Chinese) [魏源, 肖峰, 吴博, 黄志祥, 吴先良 2014 光子学报 43 62]

    [4]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666

    [5]

    Bao Q L, Kian P L 2012 ACS Nano 6 3677

    [6]

    Wu H Q 2013 Chin. Phys. B 22 098106

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [8]

    Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [9]

    Liu M, Yin X B, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [10]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [11]

    Schwierz F 2010 Nat Nanotechnol 5 487

    [12]

    Wu L, Chu H S, Koh W S, Li E P 2010 Opt. Express 18 14395

    [13]

    Vakil A, Engheta N 2011 Science 10 1291

    [14]

    Peierls R 1935 Annals de l'I. H. P. 5 177

    [15]

    Landau L 1937 Phys. Z. Sowjetunion 11 26

    [16]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [17]

    beilenhoff K, Heinrich W, Hartnagel H L 1992 IEEE T. Microw. Theory. 40 540

    [18]

    Simsek E 2013 Opt. Lett. 38 1437

    [19]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [20]

    Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York: Van Nostrand Reinhold) p121

    [21]

    Wang H, Huang Z X, Wu X L, Ren X G 2011 Chin. Phys. B 20 114701

    [22]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 物理学报 61 194701]

    [23]

    Ren X G, Sha W E I, Choy W C H 2013 Opt. Express 21 31824

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [3] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [4] 张源, 陈晨, 李美亚, 罗山梦黛. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化. 物理学报, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [5] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [6] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [7] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] 林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟. 扭转双层石墨烯物理性质、制备方法及其应用的研究进展. 物理学报, 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [10] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [12] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [13] 毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽. 基于石墨烯涂覆空心光纤电光调制特性的研究. 物理学报, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [14] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [15] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [16] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [17] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] 梁钊铭, 吴永刚, 夏子奂, 周建, 秦雪飞. 前后光栅周期对于双光栅结构薄膜太阳能电池光俘获效应的影响. 物理学报, 2014, 63(19): 198801. doi: 10.7498/aps.63.198801
    [19] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [20] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
计量
  • 文章访问数:  6253
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-13
  • 修回日期:  2014-08-23
  • 刊出日期:  2015-01-05

/

返回文章
返回