搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响

代广珍 蒋先伟 徐太龙 刘琦 陈军宁 代月花

密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响

代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花
PDF
导出引用
  • HfO2因高k值、热稳定性良好和相对Si导带偏移良好等特点, 作为电荷俘获型存储器栅介质材料得到了广泛研究. 为了明确高k俘获层提高CTM电荷俘获效率的原因, 运用基于密度泛函理论的第一性原理计算, 研究了氧空位引起HfO2的晶格变化及其影响计算结果显示优化后氧空位最近邻氧原子间距明显减小, 次近邻O与Hf间距变化稍小. 优化后氧空位明显改变局部晶格, 而对较远晶格影响逐渐减弱, 即引起了局部晶格变化深能级和导带电子态密度主要是Hf原子贡献, 而价带则是O原子贡献. 优化后各元素局部电子态密度和总电子态密度都明显大于未优化体系, 局部电子态密度之和比总电子态密度小. 优化后俘获电荷主要在氧空位周围和相邻氧原子上, 而未优化时电荷遍布整个体系. 优化后缺陷体系电荷局域能增大, 电荷量增加时未优化体系电荷局域能明显减小, 即晶格变化无饱和特性对电荷局域影响大.说明晶格变化对电荷的俘获能力较强, 有利于改善存储器特性.
    • 基金项目: 国家自然科学基金面上项目(批准号: 61376106)资助的课题.
    [1]

    Kim, Kinam 2005 IEEE International Electron Devices Meeting Washington, DC, American, Dec 5-5 2005 p323

    [2]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [3]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [4]

    Chen X, Zhu Z L, Liu M 2010 Appl. Phys. Lett. 97 225513

    [5]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interfaces 3 3691

    [6]

    Liu J, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 Symposium on VLSI Technology Hawaii, American, June 13-15 2006 p54

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    You H C, Hsu T H, Ko F H, Huang J W, Lei T F 2006 IEEE Electron device letters 27 653

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin K J, Lai Y L, Lai H L 2007 Electron Device and Solid-State Circuits (EDSSC 2007), Taian, Tainan, China, Dec 20-22 2007 p629

    [13]

    Joo M S, Cho B J, Yeo C C, Chan D S H, Whoang S J, Mathew S 2003 IEEE Trans. Electron Devices 50 2088

    [14]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco, CA, American Dec 11-13 2006 p1

    [15]

    Tan Y N, Chim W J, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [16]

    Robertson J, Xiong K, Clark S J 2006 Thin Solid Films 496 1

    [17]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [18]

    Umezawa N, Sato M, Shiraishi K 2008 Appl. Phys. Lett. 93 223104

    [19]

    Ramo D M, Shluger A L, Gabartin J L and Bersuker G 2007 Phys. Rev. Lett. 99 155504

    [20]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego, CA, American Sept 9-11 2009 p155

    [21]

    Zhang W, Hou Z F 2013 Phys. Status Solidi B 250 352

    [22]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [23]

    Garcia J C, Scolfaro L M R, Leite J R, Lino A T, Freire V N, Farias G A, Da Silva Jr E F 2004 Appl. Phys. Lett. 85 5022

    [24]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, da Silva Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30 2005 p189

    [25]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [26]

    Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N, Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese) [代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦 2014 物理学报 63 123101]

    [27]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [31]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [32]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S W 2008 Phys. Rev. B 78 012102

    [33]

    Balog M, Schieber M, Michiman M, Patai S 1977 Thin Solid Films 41 247

    [34]

    Chen G H, Hou Z F, Gong X G 2008 Comp. Mater. Sci. 44 46

  • [1]

    Kim, Kinam 2005 IEEE International Electron Devices Meeting Washington, DC, American, Dec 5-5 2005 p323

    [2]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [3]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [4]

    Chen X, Zhu Z L, Liu M 2010 Appl. Phys. Lett. 97 225513

    [5]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interfaces 3 3691

    [6]

    Liu J, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 Symposium on VLSI Technology Hawaii, American, June 13-15 2006 p54

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    You H C, Hsu T H, Ko F H, Huang J W, Lei T F 2006 IEEE Electron device letters 27 653

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin K J, Lai Y L, Lai H L 2007 Electron Device and Solid-State Circuits (EDSSC 2007), Taian, Tainan, China, Dec 20-22 2007 p629

    [13]

    Joo M S, Cho B J, Yeo C C, Chan D S H, Whoang S J, Mathew S 2003 IEEE Trans. Electron Devices 50 2088

    [14]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco, CA, American Dec 11-13 2006 p1

    [15]

    Tan Y N, Chim W J, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [16]

    Robertson J, Xiong K, Clark S J 2006 Thin Solid Films 496 1

    [17]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [18]

    Umezawa N, Sato M, Shiraishi K 2008 Appl. Phys. Lett. 93 223104

    [19]

    Ramo D M, Shluger A L, Gabartin J L and Bersuker G 2007 Phys. Rev. Lett. 99 155504

    [20]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego, CA, American Sept 9-11 2009 p155

    [21]

    Zhang W, Hou Z F 2013 Phys. Status Solidi B 250 352

    [22]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [23]

    Garcia J C, Scolfaro L M R, Leite J R, Lino A T, Freire V N, Farias G A, Da Silva Jr E F 2004 Appl. Phys. Lett. 85 5022

    [24]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, da Silva Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30 2005 p189

    [25]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [26]

    Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N, Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese) [代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦 2014 物理学报 63 123101]

    [27]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [31]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [32]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S W 2008 Phys. Rev. B 78 012102

    [33]

    Balog M, Schieber M, Michiman M, Patai S 1977 Thin Solid Films 41 247

    [34]

    Chen G H, Hou Z F, Gong X G 2008 Comp. Mater. Sci. 44 46

  • [1] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [2] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [3] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [4] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [5] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [6] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [7] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [8] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [9] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [10] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [11] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究. 物理学报, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [12] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [13] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [14] 胡小颖, 田宏伟, 宋立军, 朱品文, 乔靓. Li-N, Li-2N共掺p型ZnO的第一性原理研究. 物理学报, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [15] 党宏丽, 王崇愚, 于 涛. γ-TiAl中Nb和Mo合金化效应的第一性原理研究. 物理学报, 2007, 56(5): 2838-2844. doi: 10.7498/aps.56.2838
    [16] 梁飞, 林哲帅, 吴以成. 基于第一性原理的新型非线性光学晶体探索. 物理学报, 2018, 67(11): 114203. doi: 10.7498/aps.67.20180189
    [17] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [18] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [19] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究. 物理学报, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [20] 莽朝永, 苟高章, 刘彩萍, 吴克琛. 木榄醇手性光谱的密度泛函研究. 物理学报, 2011, 60(4): 043101. doi: 10.7498/aps.60.043101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1305
  • PDF下载量:  943
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-05
  • 修回日期:  2014-09-19
  • 刊出日期:  2015-02-05

密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响

  • 1. 安徽工程大学电气工程学院, 安徽省检测及自动化重点实验室, 芜湖 241000;
  • 2. 安徽大学电子信息工程学院, 安徽省集成电路设计重点实验室, 合肥 230601;
  • 3. 中国科学院微电子研究所, 北京 100029
    基金项目: 

    国家自然科学基金面上项目(批准号: 61376106)资助的课题.

摘要: HfO2因高k值、热稳定性良好和相对Si导带偏移良好等特点, 作为电荷俘获型存储器栅介质材料得到了广泛研究. 为了明确高k俘获层提高CTM电荷俘获效率的原因, 运用基于密度泛函理论的第一性原理计算, 研究了氧空位引起HfO2的晶格变化及其影响计算结果显示优化后氧空位最近邻氧原子间距明显减小, 次近邻O与Hf间距变化稍小. 优化后氧空位明显改变局部晶格, 而对较远晶格影响逐渐减弱, 即引起了局部晶格变化深能级和导带电子态密度主要是Hf原子贡献, 而价带则是O原子贡献. 优化后各元素局部电子态密度和总电子态密度都明显大于未优化体系, 局部电子态密度之和比总电子态密度小. 优化后俘获电荷主要在氧空位周围和相邻氧原子上, 而未优化时电荷遍布整个体系. 优化后缺陷体系电荷局域能增大, 电荷量增加时未优化体系电荷局域能明显减小, 即晶格变化无饱和特性对电荷局域影响大.说明晶格变化对电荷的俘获能力较强, 有利于改善存储器特性.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回