搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F8BT薄膜表面形貌及与Al形成界面的电子结构和反应

潘宵 鞠焕鑫 冯雪飞 范其瑭 王嘉兴 杨耀文 朱俊发

F8BT薄膜表面形貌及与Al形成界面的电子结构和反应

潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发
PDF
导出引用
  • 基于共轭聚合物光电器件的性能与聚合物的表面形貌、分子取向、以及与金属电极形成的界面结构密切相关. 本文利用原子力显微镜(AFM)、同步辐射光电子能谱(SRPES)和近边X射线吸收精细结构谱(NEXAFS)等, 研究了聚(9, 9-二辛基芴并苯噻二唑)(F8BT)薄膜的表面形貌、分子取向及其与Al 电极形成界面过程的结构变化. 结果表明, 在略低于F8BT玻璃转变温度(Tg=130 ℃)条件下对F8BT薄膜进行退火, 可明显增加薄膜的表面粗糙度, 薄膜中F8BT 的分子取向角约为49, 9, 9-二辛基芴单元(F8)与苯噻唑单元(BT)几乎在同一平面. 在Al/F8BT 界面形成过程中, Al与F8BT中的C, N和S均发生不同程度的化学反应, 并导致价带结构和未占据分子轨道(LUMO)态密度的变化. Al对F8BT进行n型掺杂引起F8BT能带弯曲的同时, 未占据能级被部分占据, 更多的电子将被注入到LUMO+1中. 通过考察价带电子结构、芯能级位移及二次截止边的变化, 绘制了清晰的Al/F8BT界面能级图.
    • 基金项目: 国家自然科学基金面上项目(批准号: 21173200, 21473178)和国家重点基础研究发展计划(批准号: 2013CB834605)资助的课题.
    [1]

    Brabec C J 2004 Sol. Energ. Mat. Sol. C 83 273

    [2]

    Forrest S R 2004 Nature 428 911

    [3]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [4]

    Haque S A, Koops S, Tokmoldin N, Durrant J R, Huang J S, Bradley D D C, Palomares E 2007 Adv. Mater. 19 683

    [5]

    Kabra D, Song M H, Wenger B, Friend R H, Snaith H J 2008 Adv. Mater. 20 3447

    [6]

    Nakayama Y, Morii K, Suzuki Y, Machida H, Kera S, Ueno N, Kitagawa H, Noguchi Y, Ishii H 2009 Adv. Funct. Mater. 19 3746

    [7]

    Duhm S, Heimel G, Salzmann I, Glowatzki H, Johnson R L, Vollmer A, Rabe J P, Koch N 2008 Nat. Mater. 7 326

    [8]

    Nam S, Shin M, Kim H, Ha C S, Ree M, Kim Y 2011 Adv. Funct. Mater. 21 4527

    [9]

    Cataldo S, Sartorio C, Giannazzo F, Scandurra A, Pignataro B 2014 Nanoscale 6 3566

    [10]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller-Buschbaum P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [11]

    Orimo A, Masuda K, Honda S, Benten H, Ito S, Ohkita H, Tsuji H 2010 Appl. Phys. Lett. 96

    [12]

    Roige A, Campoy-Quiles M, Osso J O, Alonso M I, Vega L F, Garriga M 2012 Synthetic Met. 161 2570

    [13]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [14]

    Donley C L, Zaumseil J, Andreasen J W, Nielsen M M, Sirringhaus H, Friend R H, Kim J S 2005 J. Am Chem. Soc. 127 12890

    [15]

    Hofmann O T, Egger D A, Zojer E 2010 Nano. Lett. 10 4369

    [16]

    Crispin X, Geskin V, Crispin A, Cornil J, Lazzaroni R, Salaneck W R, Bredas J L 2002 J. Am. Chem. Soc. 124 8131

    [17]

    Frisch J, Glowatzki H, Janietz S, Koch N 2009 Org. Electron. 10 1459

    [18]

    Fung M K, Lai S L, Bao S N, Lee C S, Lee S T, Wu W W, Inbasekaran M, O’Brien J J 2002 J. Vac. Sci. Technol. A 20 911

    [19]

    Zhou Y H, Zhu L P, Qiu Y 2011 Org. Electron. 12 234

    [20]

    Dannetun P, Boman M, Stafstrom S, Salaneck W R, Lazzaroni R, Fredriksson C, Bredas J L, Zamboni R, Taliani C 1993 J. Chem. Phys. 99 664

    [21]

    Zhao W, Guo Y X, Feng X F, Zhang L, Zhang W H, Zhu J F 2009 Chinese Sci. Bull. 54 1978

    [22]

    Ju H X, Feng X F, Ye Y F, Zhang L, Pan H B, Campbell C T, Zhu J F 2012 J. Phys. Chem. C 116 20465

    [23]

    Ju H X, Ye Y F, Feng X F, Pan H B, Zhu J F, Ruzycki N, Campbell C T 2014 J. Phys. Chem. C 118 6352

    [24]

    Greczynski G, Fahlman M, Salaneck W R 2000 J. Chem. Phys. 113 2407

    [25]

    Liao L S, Cheng L F, Fung M K, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Phys. Rev. B 62 10004

    [26]

    Liao L S, Fung M K, Cheng L F, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Appl. Phys. Lett. 77 3191

    [27]

    Fung M K, Lai S L, Tong S W, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Lee S T 2003 J. Appl. Phys. 94 5763

    [28]

    Fung M K, Tong S W, Lai S L, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Liu S Y, Lee S T 2003 J. Appl. Phys. 94 2686

    [29]

    Feng X F, Zhao W, Ju H X, Zhang L, Ye Y F, Zhang W H, Zhu J F 2012 Org. Electron. 13 1060

    [30]

    Min H, Girard-Lauriault P L, Gross T, Lippitz A, Dietrich P, Unger W E S 2012 Anal. Bioanal. Chem. 403 613

    [31]

    Shin M, Kim H, Kim Y 2011 Mater. Sci. Eng. B-Adv. 176 382

    [32]

    Xiong Y, Peng J B, Wu H B, Wang J 2009 Chin. Phys.Lett. 26 097801

    [33]

    Yan H P, Swaraj S, Wang C, Hwang I, Greenham N C, Groves C, Ade H, McNeill C R 2010 Adv. Funct. Mater. 20 4329

    [34]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller B P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [35]

    Lee T W, Park O O 2000 Adv. Mater. 12 801

    [36]

    Anselmo A S, Dzwilewski A, Svensson K, Moons E 2013 J. Polym. Sci. Pol. Phys. 51 176

    [37]

    Watts B, Schuettfort T, McNeill C R 2011 Adv. Funct. Mater. 21 1122

    [38]

    Gliboff M, Sulas D, Nordlund D, deQuilettes D W, Nguyen P D, Seidler G T, Li X S, Ginger D S 2014 J. Phys. Chem. C 118 5570

    [39]

    Salaneck W R, Bredas J L 1996 Adv. Mater. 8 48

    [40]

    Bebin P, Prud’homme R E 2003 Chem. Mater. 15 965

    [41]

    Oultache A K, Prud’homme R E 2000 Polym. Advan. Technol. 11 316

    [42]

    Michaelson H B 1977 J. Appl. Phys. 48 4729

  • [1]

    Brabec C J 2004 Sol. Energ. Mat. Sol. C 83 273

    [2]

    Forrest S R 2004 Nature 428 911

    [3]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [4]

    Haque S A, Koops S, Tokmoldin N, Durrant J R, Huang J S, Bradley D D C, Palomares E 2007 Adv. Mater. 19 683

    [5]

    Kabra D, Song M H, Wenger B, Friend R H, Snaith H J 2008 Adv. Mater. 20 3447

    [6]

    Nakayama Y, Morii K, Suzuki Y, Machida H, Kera S, Ueno N, Kitagawa H, Noguchi Y, Ishii H 2009 Adv. Funct. Mater. 19 3746

    [7]

    Duhm S, Heimel G, Salzmann I, Glowatzki H, Johnson R L, Vollmer A, Rabe J P, Koch N 2008 Nat. Mater. 7 326

    [8]

    Nam S, Shin M, Kim H, Ha C S, Ree M, Kim Y 2011 Adv. Funct. Mater. 21 4527

    [9]

    Cataldo S, Sartorio C, Giannazzo F, Scandurra A, Pignataro B 2014 Nanoscale 6 3566

    [10]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller-Buschbaum P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [11]

    Orimo A, Masuda K, Honda S, Benten H, Ito S, Ohkita H, Tsuji H 2010 Appl. Phys. Lett. 96

    [12]

    Roige A, Campoy-Quiles M, Osso J O, Alonso M I, Vega L F, Garriga M 2012 Synthetic Met. 161 2570

    [13]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [14]

    Donley C L, Zaumseil J, Andreasen J W, Nielsen M M, Sirringhaus H, Friend R H, Kim J S 2005 J. Am Chem. Soc. 127 12890

    [15]

    Hofmann O T, Egger D A, Zojer E 2010 Nano. Lett. 10 4369

    [16]

    Crispin X, Geskin V, Crispin A, Cornil J, Lazzaroni R, Salaneck W R, Bredas J L 2002 J. Am. Chem. Soc. 124 8131

    [17]

    Frisch J, Glowatzki H, Janietz S, Koch N 2009 Org. Electron. 10 1459

    [18]

    Fung M K, Lai S L, Bao S N, Lee C S, Lee S T, Wu W W, Inbasekaran M, O’Brien J J 2002 J. Vac. Sci. Technol. A 20 911

    [19]

    Zhou Y H, Zhu L P, Qiu Y 2011 Org. Electron. 12 234

    [20]

    Dannetun P, Boman M, Stafstrom S, Salaneck W R, Lazzaroni R, Fredriksson C, Bredas J L, Zamboni R, Taliani C 1993 J. Chem. Phys. 99 664

    [21]

    Zhao W, Guo Y X, Feng X F, Zhang L, Zhang W H, Zhu J F 2009 Chinese Sci. Bull. 54 1978

    [22]

    Ju H X, Feng X F, Ye Y F, Zhang L, Pan H B, Campbell C T, Zhu J F 2012 J. Phys. Chem. C 116 20465

    [23]

    Ju H X, Ye Y F, Feng X F, Pan H B, Zhu J F, Ruzycki N, Campbell C T 2014 J. Phys. Chem. C 118 6352

    [24]

    Greczynski G, Fahlman M, Salaneck W R 2000 J. Chem. Phys. 113 2407

    [25]

    Liao L S, Cheng L F, Fung M K, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Phys. Rev. B 62 10004

    [26]

    Liao L S, Fung M K, Cheng L F, Lee C S, Lee S T, Inbasekaran M, Woo E P, Wu W W 2000 Appl. Phys. Lett. 77 3191

    [27]

    Fung M K, Lai S L, Tong S W, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Lee S T 2003 J. Appl. Phys. 94 5763

    [28]

    Fung M K, Tong S W, Lai S L, Bao S N, Lee C S, Wu W W, Inbasekaran M, O’Brien J J, Liu S Y, Lee S T 2003 J. Appl. Phys. 94 2686

    [29]

    Feng X F, Zhao W, Ju H X, Zhang L, Ye Y F, Zhang W H, Zhu J F 2012 Org. Electron. 13 1060

    [30]

    Min H, Girard-Lauriault P L, Gross T, Lippitz A, Dietrich P, Unger W E S 2012 Anal. Bioanal. Chem. 403 613

    [31]

    Shin M, Kim H, Kim Y 2011 Mater. Sci. Eng. B-Adv. 176 382

    [32]

    Xiong Y, Peng J B, Wu H B, Wang J 2009 Chin. Phys.Lett. 26 097801

    [33]

    Yan H P, Swaraj S, Wang C, Hwang I, Greenham N C, Groves C, Ade H, McNeill C R 2010 Adv. Funct. Mater. 20 4329

    [34]

    Meier R, Chiang H Y, Ruderer M A, Guo S A, Korstgens V, Perlich J, Muller B P 2012 J. Polym. Sci. Pol. Phys. 50 631

    [35]

    Lee T W, Park O O 2000 Adv. Mater. 12 801

    [36]

    Anselmo A S, Dzwilewski A, Svensson K, Moons E 2013 J. Polym. Sci. Pol. Phys. 51 176

    [37]

    Watts B, Schuettfort T, McNeill C R 2011 Adv. Funct. Mater. 21 1122

    [38]

    Gliboff M, Sulas D, Nordlund D, deQuilettes D W, Nguyen P D, Seidler G T, Li X S, Ginger D S 2014 J. Phys. Chem. C 118 5570

    [39]

    Salaneck W R, Bredas J L 1996 Adv. Mater. 8 48

    [40]

    Bebin P, Prud’homme R E 2003 Chem. Mater. 15 965

    [41]

    Oultache A K, Prud’homme R E 2000 Polym. Advan. Technol. 11 316

    [42]

    Michaelson H B 1977 J. Appl. Phys. 48 4729

  • [1] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [2] 李智浩, 曹亮, 郭玉献. 苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究. 物理学报, 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [3] 何少龙, 李宏年, 王晓雄, 李海洋, I. Kurash, 钱海杰, 苏 润, M. I. Abbas, 钟 俊, 洪才浩. Yb2.75C60同步辐射光电子能谱. 物理学报, 2005, 54(3): 1400-1405. doi: 10.7498/aps.54.1400
    [4] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [5] 蔡春锋, 张兵坡, 黎瑞锋, 徐天宁, 毕岗, 吴惠桢, 张文华, 朱俊发. 利用同步辐射光电子能谱技术测量ZnO/PbTe异质结的能带带阶. 物理学报, 2014, 63(16): 167301. doi: 10.7498/aps.63.167301
    [6] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [7] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [8] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究. 物理学报, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [9] 万力, 曹亮, 张文华, 韩玉岩, 陈铁锌, 刘凌云, 郭盼盼, 冯金勇, 徐法强. FePc与TiO2(110)及C60界面电子结构研究. 物理学报, 2012, 61(18): 186801. doi: 10.7498/aps.61.186801
    [10] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [11] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [12] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响. 物理学报, 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [13] 李宏年. Rb掺杂C60单晶的相衍变和电子态. 物理学报, 2004, 53(1): 248-253. doi: 10.7498/aps.53.248
    [14] 张玲, 何智兵, 廖国, 谌家军, 许华, 李俊. B掺杂对Ti薄膜结构与性能的影响. 物理学报, 2012, 61(18): 186803. doi: 10.7498/aps.61.186803
    [15] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [16] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [17] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [18] 周勋, 罗子江, 王继红, 郭祥, 丁召. 低As压退火对GaAs(001)表面形貌与重构的影响. 物理学报, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [19] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [20] 汪 渊, 白宣羽, 徐可为. 基于小波变换Cu-W薄膜表面形貌表征与硬度值分散性评价. 物理学报, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1786
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-02-03
  • 刊出日期:  2015-04-05

F8BT薄膜表面形貌及与Al形成界面的电子结构和反应

  • 1. 中国科学技术大学国家同步辐射实验室, 合肥 230029;
  • 2. 台湾同步辐射研究中心, 新竹 30076
    基金项目: 

    国家自然科学基金面上项目(批准号: 21173200, 21473178)和国家重点基础研究发展计划(批准号: 2013CB834605)资助的课题.

摘要: 基于共轭聚合物光电器件的性能与聚合物的表面形貌、分子取向、以及与金属电极形成的界面结构密切相关. 本文利用原子力显微镜(AFM)、同步辐射光电子能谱(SRPES)和近边X射线吸收精细结构谱(NEXAFS)等, 研究了聚(9, 9-二辛基芴并苯噻二唑)(F8BT)薄膜的表面形貌、分子取向及其与Al 电极形成界面过程的结构变化. 结果表明, 在略低于F8BT玻璃转变温度(Tg=130 ℃)条件下对F8BT薄膜进行退火, 可明显增加薄膜的表面粗糙度, 薄膜中F8BT 的分子取向角约为49, 9, 9-二辛基芴单元(F8)与苯噻唑单元(BT)几乎在同一平面. 在Al/F8BT 界面形成过程中, Al与F8BT中的C, N和S均发生不同程度的化学反应, 并导致价带结构和未占据分子轨道(LUMO)态密度的变化. Al对F8BT进行n型掺杂引起F8BT能带弯曲的同时, 未占据能级被部分占据, 更多的电子将被注入到LUMO+1中. 通过考察价带电子结构、芯能级位移及二次截止边的变化, 绘制了清晰的Al/F8BT界面能级图.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回