搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流电晕充电下环氧树脂表面电位衰减特性的研究

茹佳胜 闵道敏 张翀 李盛涛 邢照亮 李国倡

直流电晕充电下环氧树脂表面电位衰减特性的研究

茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡
PDF
导出引用
导出核心图
  • 介质材料表面电荷的积累和衰减行为是制约众多高压直流电力设备研制的关键因素. 薄片状介质试样的表面电荷密度与表面电位近似呈线性关系, 因此常通过表面电位衰减行为研究表面电荷的衰减特性. 基于电晕充电、表面电荷沉积和脱陷、介质体内单极性电荷输运等3个物理过程, 建立表面电位动态响应的物理模型. 通过计算环氧树脂的表面电位衰减行为, 得到栅极电压、相对介电常数和体电导率等对其表面电位衰减特性的影响. 栅极电压越高, 表面电位的衰减速度越快; 环氧树脂材料参数典型值(相对介电常数3.93, 体电导率10-14 S m-1)下, 归一化表面电位的衰减速率随时间变化的曲线可拟合为分段幂函数, 其中, 分段幂函数的特征时间、指数系数与栅极电压分别呈幂函数和线性变化关系. 相对介电常数越大, 表面电位的衰减速度越慢; 环氧树脂相对介电常数典型范围(34)内, 表面电位衰减时间常数由1720 s增大到2540 s, 两者呈线性关系. 体电导率越大, 表面电位的衰减速度越快; 环氧树脂体电导率典型范围(10-1510-13 S m-1)内, 表面电位衰减时间常数由24760 s 减小到260 s, 两者呈幂函数变化关系.
      通信作者: 李盛涛, sli@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11275146)和国家自然科学基金重点项目(批准号: 51337008) 资助的课题.
    [1]

    Lorenzi A D, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. Dielectr. Electr. Insulat. 16 77

    [2]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 物理学报 61 158201]

    [3]

    Sato S, Zaengl W S, Knecht A 1987 IEEE Trans. Electr. Insulat. EI-22 333

    [4]

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801 (in Chinese) [李维勤, 郝杰, 张海波 2015 物理学报 64 086801]

    [5]

    Feng G B, Wang F, Hu T C, Cao M 2015 Chin. Phys. B 24 117901

    [6]

    Hosono T, Kato K, Morita A, Okubo H 2007 IEEE Trans. Dielectr. Electr. Insulat. 14 627

    [7]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 International Conference on High Voltage Engineering and Application Poznan, September 8-11, 2014 p1

    [8]

    Gao Y, Du B X 2012 High Voltage Eng. 38 824 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 824]

    [9]

    Mizutani T, Taniguchi Y, Ishioka M 2002 Conference Proceedings of 11m th International Symposium on Electrets Melbourne, Australia, October 1-3, 2002 p15

    [10]

    Neves A, Martins H J A 1996 Conference Record of International Symposium on Electrical Insulation Montreal, Canada, June 16-19, 1996 p782

    [11]

    Li A, Du B X, Xu H, Li Z L, Xiao M, Han T 2015 High Voltage Eng. 41 410 (in Chinese) [李昂, 杜伯学, 徐航, 李忠磊, 肖萌, 韩涛 2015 高电压技术 41 410]

    [12]

    Du B X, Xiao M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 529

    [13]

    Sonnonstine T J, Perlman M M 1975 J. Appl. Phys. 46 3975

    [14]

    Chen G, Xu Z, Zhang L W 2007 Meas. Sci. Technol. 18 1453

    [15]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 941

    [16]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 949

    [17]

    Perrin C, Griseri V, Laurent C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 958

    [18]

    Xu Z Q, Zhang L W, Chen G 2007 J. Phys. D: Appl. Phys. 40 7085

    [19]

    Ziari Z, Sahli S, Bellel A 2010 M. J. Conden. Matter 12 223

    [20]

    von Berlepsch H 1985 J. Phys. D: Appl. Phys. 18 1155

    [21]

    Chen G 2010 J. Phys. D: Appl. Phys. 43 055405

    [22]

    Min D M, Li S T 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1627

    [23]

    Min D M, Cho M G, Li S T, Khan A R 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 2206

    [24]

    Min D M 2013 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [闵道敏 2013 博士学位论文 (西安: 西安交通大学)]

    [25]

    Xia Z F 2001 Electret (Beijing: Science Press) pp74-78 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社) 第7478页]

    [26]

    Ji Y M, Zhang B, He J L 2014 High Voltage Eng. 40 1768 (in Chinese) [季一鸣, 张波, 何金良 2014 高电压技术 40 1768]

    [27]

    Jin W F 1995 Dielect. Phys. (Beijing: China Machine Press) pp97-117 (in Chinese) [金维芳 1995 电介质物理学 (北京: 机械工业出版社) 第97-117 页]

    [28]

    Zhang J W 2012 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张纪伟 2012 博士学位论文 (天津: 天津大学)]

    [29]

    Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401]

    [30]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411

    [31]

    Gao Y, Li Y, Cui J D, Du B X 2012 Trans. China Electrotech. Soc. 27 264 (in Chinese) [高宇, 李莹, 崔劲达, 杜伯学 2012 电工技术学报 27 264]

    [32]

    Yin G L 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [尹桂来 2012 博士学位论文 (西安: 西安交通大学)]

    [33]

    Zhou Y X, Wu P X, Cheng Z Y, Ingram J, Jeelani S 2008 Express Polym. Lett. 2 40

    [34]

    Gao Y, Du B X 2012 Conference Record of the 2012 IEEE International Symposium on Electrical Insulation San Juan, PR, June 10-13, 2012 p531

    [35]

    Ieda M, Sawa G, Shinohara U 1967 Jpn. J. Appl. Phys. 6 793

    [36]

    Wu N P 1990 Electrical Materials Science (Beijing: China Machine Press) p78 (in Chinese) [吴南屏 1990 电工材料学 (北京: 机械工业出版社) 第78页]

    [37]

    Wintle H J 1970 J. Appl. Phys. 41 4004

    [38]

    Gao Y, Du B X 2012 High Voltage Eng. 38 2097 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 2097]

    [39]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1291

    [40]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

  • [1]

    Lorenzi A D, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. Dielectr. Electr. Insulat. 16 77

    [2]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 物理学报 61 158201]

    [3]

    Sato S, Zaengl W S, Knecht A 1987 IEEE Trans. Electr. Insulat. EI-22 333

    [4]

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801 (in Chinese) [李维勤, 郝杰, 张海波 2015 物理学报 64 086801]

    [5]

    Feng G B, Wang F, Hu T C, Cao M 2015 Chin. Phys. B 24 117901

    [6]

    Hosono T, Kato K, Morita A, Okubo H 2007 IEEE Trans. Dielectr. Electr. Insulat. 14 627

    [7]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 International Conference on High Voltage Engineering and Application Poznan, September 8-11, 2014 p1

    [8]

    Gao Y, Du B X 2012 High Voltage Eng. 38 824 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 824]

    [9]

    Mizutani T, Taniguchi Y, Ishioka M 2002 Conference Proceedings of 11m th International Symposium on Electrets Melbourne, Australia, October 1-3, 2002 p15

    [10]

    Neves A, Martins H J A 1996 Conference Record of International Symposium on Electrical Insulation Montreal, Canada, June 16-19, 1996 p782

    [11]

    Li A, Du B X, Xu H, Li Z L, Xiao M, Han T 2015 High Voltage Eng. 41 410 (in Chinese) [李昂, 杜伯学, 徐航, 李忠磊, 肖萌, 韩涛 2015 高电压技术 41 410]

    [12]

    Du B X, Xiao M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 529

    [13]

    Sonnonstine T J, Perlman M M 1975 J. Appl. Phys. 46 3975

    [14]

    Chen G, Xu Z, Zhang L W 2007 Meas. Sci. Technol. 18 1453

    [15]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 941

    [16]

    Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 949

    [17]

    Perrin C, Griseri V, Laurent C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 958

    [18]

    Xu Z Q, Zhang L W, Chen G 2007 J. Phys. D: Appl. Phys. 40 7085

    [19]

    Ziari Z, Sahli S, Bellel A 2010 M. J. Conden. Matter 12 223

    [20]

    von Berlepsch H 1985 J. Phys. D: Appl. Phys. 18 1155

    [21]

    Chen G 2010 J. Phys. D: Appl. Phys. 43 055405

    [22]

    Min D M, Li S T 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1627

    [23]

    Min D M, Cho M G, Li S T, Khan A R 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 2206

    [24]

    Min D M 2013 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [闵道敏 2013 博士学位论文 (西安: 西安交通大学)]

    [25]

    Xia Z F 2001 Electret (Beijing: Science Press) pp74-78 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社) 第7478页]

    [26]

    Ji Y M, Zhang B, He J L 2014 High Voltage Eng. 40 1768 (in Chinese) [季一鸣, 张波, 何金良 2014 高电压技术 40 1768]

    [27]

    Jin W F 1995 Dielect. Phys. (Beijing: China Machine Press) pp97-117 (in Chinese) [金维芳 1995 电介质物理学 (北京: 机械工业出版社) 第97-117 页]

    [28]

    Zhang J W 2012 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张纪伟 2012 博士学位论文 (天津: 天津大学)]

    [29]

    Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401]

    [30]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411

    [31]

    Gao Y, Li Y, Cui J D, Du B X 2012 Trans. China Electrotech. Soc. 27 264 (in Chinese) [高宇, 李莹, 崔劲达, 杜伯学 2012 电工技术学报 27 264]

    [32]

    Yin G L 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [尹桂来 2012 博士学位论文 (西安: 西安交通大学)]

    [33]

    Zhou Y X, Wu P X, Cheng Z Y, Ingram J, Jeelani S 2008 Express Polym. Lett. 2 40

    [34]

    Gao Y, Du B X 2012 Conference Record of the 2012 IEEE International Symposium on Electrical Insulation San Juan, PR, June 10-13, 2012 p531

    [35]

    Ieda M, Sawa G, Shinohara U 1967 Jpn. J. Appl. Phys. 6 793

    [36]

    Wu N P 1990 Electrical Materials Science (Beijing: China Machine Press) p78 (in Chinese) [吴南屏 1990 电工材料学 (北京: 机械工业出版社) 第78页]

    [37]

    Wintle H J 1970 J. Appl. Phys. 41 4004

    [38]

    Gao Y, Du B X 2012 High Voltage Eng. 38 2097 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 2097]

    [39]

    Hoang A T, Serdyuk Y V, Gubanski S M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1291

    [40]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

  • [1] 段俊丽, 郝立超. 表面电荷与体陷阱对GaN基HEMT器件热电子和量子效应的影响研究. 物理学报, 2010, 59(4): 2746-2752. doi: 10.7498/aps.59.2746
    [2] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性. 物理学报, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [3] 刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎. 氟化时间对环氧树脂绝缘表面电荷积累的影响. 物理学报, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [4] 肖春燕, 雷银照. 分层球形导体中任意位置直流电流元产生电位的解析解. 物理学报, 2005, 54(4): 1950-1957. doi: 10.7498/aps.54.1950
    [5] 孙鑫. 表面电荷层的集体激发. 物理学报, 1978, 163(6): 752-755. doi: 10.7498/aps.27.752
    [6] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性. 物理学报, 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [7] 夏钟福, 王毓德, 丁亥, 杨国茂, 时东兵, 孙熙民. 聚酯的高温电晕充电和电荷在体内的输运. 物理学报, 1991, 40(12): 1986-1991. doi: 10.7498/aps.40.1986
    [8] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响. 物理学报, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [9] 徐世秋, 韩季之. 环氧树脂在固化过程中的红外吸收光谱. 物理学报, 1960, 59(2): 81-85. doi: 10.7498/aps.16.81
    [10] 冀忠宝, 夏钟福, 沈莉莉, 安振连. 电晕充电的聚丙烯无纺布空气过滤膜的电荷储存及稳定性. 物理学报, 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [11] 夏钟福, 陈钢进, 肖慧明. 电晕充电多孔PTFE/PP复合驻极体过滤材料的电荷存储特性. 物理学报, 2006, 55(5): 2464-2469. doi: 10.7498/aps.55.2464
    [12] 王炎森, 潘立民, 黄发泱, 方渡飞, 汤家镛, 杨福家. 铯离子/原子与金属表面电荷交换的计算. 物理学报, 1994, 43(12): 1950-1956. doi: 10.7498/aps.43.1950
    [13] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系. 物理学报, 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [14] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [15] 吉光达, 吴杭生. 关于微波感应直流电压现象的理论. 物理学报, 1978, 158(1): 118-120. doi: 10.7498/aps.27.118
    [16] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性. 物理学报, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [17] 刘照军, 吴国祯. 亚乙基硫脲的表面增强拉曼极化率研究:电磁和电荷转移机制. 物理学报, 2006, 55(12): 6315-6319. doi: 10.7498/aps.55.6315
    [18] 安振连, 汤敏敏, 夏钟福, 盛晓晨, 张晓青. 聚丙烯孔洞驻极体膜的化学表面处理及电荷稳定性. 物理学报, 2006, 55(2): 803-810. doi: 10.7498/aps.55.803
    [19] Abdul Qayyum, 李福利, 赵永涛, 肖国青, 王瑜玉, 詹文龙, 徐忠锋, 张小安. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [20] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
  • 引用本文:
    Citation:
计量
  • 文章访问数:  439
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-25
  • 修回日期:  2015-12-09
  • 刊出日期:  2016-02-20

直流电晕充电下环氧树脂表面电位衰减特性的研究

  • 1. 西安交通大学, 电力设备电气绝缘国家重点实验室, 西安 710049;
  • 2. 国网智能电网研究院, 北京 102209
  • 通信作者: 李盛涛, sli@mail.xjtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11275146)和国家自然科学基金重点项目(批准号: 51337008) 资助的课题.

摘要: 介质材料表面电荷的积累和衰减行为是制约众多高压直流电力设备研制的关键因素. 薄片状介质试样的表面电荷密度与表面电位近似呈线性关系, 因此常通过表面电位衰减行为研究表面电荷的衰减特性. 基于电晕充电、表面电荷沉积和脱陷、介质体内单极性电荷输运等3个物理过程, 建立表面电位动态响应的物理模型. 通过计算环氧树脂的表面电位衰减行为, 得到栅极电压、相对介电常数和体电导率等对其表面电位衰减特性的影响. 栅极电压越高, 表面电位的衰减速度越快; 环氧树脂材料参数典型值(相对介电常数3.93, 体电导率10-14 S m-1)下, 归一化表面电位的衰减速率随时间变化的曲线可拟合为分段幂函数, 其中, 分段幂函数的特征时间、指数系数与栅极电压分别呈幂函数和线性变化关系. 相对介电常数越大, 表面电位的衰减速度越慢; 环氧树脂相对介电常数典型范围(34)内, 表面电位衰减时间常数由1720 s增大到2540 s, 两者呈线性关系. 体电导率越大, 表面电位的衰减速度越快; 环氧树脂体电导率典型范围(10-1510-13 S m-1)内, 表面电位衰减时间常数由24760 s 减小到260 s, 两者呈幂函数变化关系.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回