搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数

邓永和 文大东 彭超 韦彦丁 赵瑞 彭平

二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数

邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平
PDF
导出引用
导出核心图
  • 采用分子动力学方法模拟研究了液态Cu56Zr44合金在不同冷速与压力P下的快速凝固过程, 并通过基于Honeycutt-Andersen键型指数的扩展团簇类型指数法对其微结构演变特性进行了分析. 结果表明: 快凝玻璃合金的局域原子组态主要是(12 12/1551)规则二十面体、以及 (12 8/1551 2/1541 2/1431)与(12 2/1441 8/1551 2/1661) 缺陷二十面体. 通过原子轨迹的逆向跟踪分析发现: 从过冷液体中遗传下来的二十面体对快凝合金的玻璃形成能力(GFA)具有重要影响, 不仅其可遗传分数Fi =N300 KTgi/NTg 与GFA密切相关, 而且其遗传起始温度(Tonset)与合金约化玻璃转变温度Trg = Tg/Tm也存在很好的对应关系.
      通信作者: 彭平, ppeng@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51071065, 51428101)和湖南省自然科学基金(2013JJ6070, 2015JJ5033)资助的课题.
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137

    [3]

    Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48

    [4]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409

    [5]

    Du X H, Huang J C 2008 Chin. Phys. B 17 0249

    [6]

    Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459

    [7]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [8]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102

    [9]

    Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123

    [10]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508

    [11]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [12]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [13]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [14]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520

    [15]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [16]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [17]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [18]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [19]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101]

    [20]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [23]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [24]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [25]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [26]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [27]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [28]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [29]

    Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 物理学报 61 246102]

    [30]

    Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910

    [31]

    Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105

    [32]

    Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903

    [33]

    Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732

    [34]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [35]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [36]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [37]

    Okamoto H 2008 J. Phase Equilib. Diffu. 29 204

    [38]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [39]

    Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [40]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [41]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137

    [3]

    Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48

    [4]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409

    [5]

    Du X H, Huang J C 2008 Chin. Phys. B 17 0249

    [6]

    Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459

    [7]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [8]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102

    [9]

    Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123

    [10]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508

    [11]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [12]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [13]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [14]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520

    [15]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [16]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [17]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [18]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [19]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101]

    [20]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [23]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [24]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [25]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [26]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [27]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [28]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [29]

    Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 物理学报 61 246102]

    [30]

    Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910

    [31]

    Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105

    [32]

    Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903

    [33]

    Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732

    [34]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [35]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [36]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [37]

    Okamoto H 2008 J. Phase Equilib. Diffu. 29 204

    [38]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [39]

    Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [40]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [41]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109

  • [1] 文大东, 彭平, 蒋元祺, 田泽安, 刘让苏. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪. 物理学报, 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [2] 马朝利, 夏明许, 孟庆格, 张曙光, 李建国. 金属玻璃形成液体的热力学特性. 物理学报, 2006, 55(12): 6543-6549. doi: 10.7498/aps.55.6543
    [3] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [4] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
    [5] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [6] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [7] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [8] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [9] 张林, 张彩碚, 祁阳, 徐送宁. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [10] 张宗宁, 刘美林, 李蔚, 耿长建, 张林, 赵骞. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [11] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [12] 李乡安, 龙志林, 彭建, 张平, 张志纯, 危洪清. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [13] 危洪清, 龙志林, 许福, 张平, 唐翌. Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究. 物理学报, 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [14] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [15] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [16] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [17] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [18] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究. 物理学报, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [19] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [20] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1038
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-02
  • 修回日期:  2015-11-16
  • 刊出日期:  2016-03-05

二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数

  • 1. 湖南大学材料科学与工程学院, 长沙 410082;
  • 2. 湖南工程学院理学院, 湘潭 411104
  • 通信作者: 彭平, ppeng@hnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 51071065, 51428101)和湖南省自然科学基金(2013JJ6070, 2015JJ5033)资助的课题.

摘要: 采用分子动力学方法模拟研究了液态Cu56Zr44合金在不同冷速与压力P下的快速凝固过程, 并通过基于Honeycutt-Andersen键型指数的扩展团簇类型指数法对其微结构演变特性进行了分析. 结果表明: 快凝玻璃合金的局域原子组态主要是(12 12/1551)规则二十面体、以及 (12 8/1551 2/1541 2/1431)与(12 2/1441 8/1551 2/1661) 缺陷二十面体. 通过原子轨迹的逆向跟踪分析发现: 从过冷液体中遗传下来的二十面体对快凝合金的玻璃形成能力(GFA)具有重要影响, 不仅其可遗传分数Fi =N300 KTgi/NTg 与GFA密切相关, 而且其遗传起始温度(Tonset)与合金约化玻璃转变温度Trg = Tg/Tm也存在很好的对应关系.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回