搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪

文大东 彭平 蒋元祺 田泽安 刘让苏

快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪

文大东, 彭平, 蒋元祺, 田泽安, 刘让苏
PDF
导出引用
导出核心图
  • 采用分子动力学方法模拟研究了液态Cu64Zr36合金在冷速50 K/ns下 的快速凝固过程, 并通过双体分布函数、Honeycutt-Andersen (H-A) 键型指数和团簇类型指数对其微结构演变特性进行了分析. 液态与快凝玻璃合金的主要原子组态都是二十面体(12 0 12 0)及其变形结构 (12 8/1551 2/1541 2/1431), 其中比例最高的是Cu芯Cu8Zr5基本原子团, 其次是Cu7Zr6和Cu9Zr4团簇; 并且由这些二十面体基本原子团铰链形成的中程序, 其尺寸分布在液相和固相中分别呈现出13, 19, 25,···和13, 19, 23, 25, 29, 37,···的幻数特征. 团簇的演化与跟踪分析发现: 没有任何团簇能从液态直接遗传到固态合金, 遗传的起始温度出现在Tm–Tg过冷液相区. 二十面体团簇的遗传主要以完全和直接遗传为主, 并且一个明显的增加发生在Tg附近. 在玻璃化转变温度Tg以下, (12 0 12 0) 二十面体比 (12 8/1551 2/1541 2/1431) 变形二十面体具有更高的结构遗传能力, 但仅有少部分在遗传过程中能保持化学成分的恒定. 通过部分遗传, 某些二十面体中程序甚至也能从过冷液体中被遗传到玻璃合金.
    • 基金项目: 国家自然科学基金(批准号:51071065)和高等学校博士学科点专项科研基金(批准号:20100161110001)资助的课题.
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Park E S, Kim D H, Kim W T 2005 Appl. Phys. Lett. 86 061907

    [4]

    Xia M X, Meng Q G, Zhang S G, Ma C L, Li J G 2006 Acta Phys. Sin. 55 6543 (in Chinese) [夏明许, 孟庆格, 张曙光, 马朝利, 李建国 2006 物理学报 55 6543]

    [5]

    Han G, Qiang J B, Wang Q, Wang Y M, Xia J H, Zhu C L, Quan S G, Dong C 2012 Acta Phys. Sin. 61 036402 (in Chinese) [韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯 2012 物理学报 61 036402]

    [6]

    Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 56 1543 (in Chinese) [王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒 2006 物理学报 56 1543]

    [7]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949

    [8]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [9]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [10]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [11]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [12]

    Yang L, Bian X F, Pan S P, Qin J Y 2012 Acta Phys. Sin. 61 036101 (in Chinese) [杨磊, 边秀房, 潘少鹏, 秦敬玉 2012 物理学报 61 036101]

    [13]

    Wang L, Zhang Y N, Mao X M, Peng C X 2007 Chin. Phys. Lett. 24 2319

    [14]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [15]

    Ding J, Cheng Y Q, Sheng H W, Ma E 2012 Phys. Rev. B 85 060201

    [16]

    Liu X J, Xu Y, Lu Z P, Hui X, Chen G L, Zheng G P, Liu C T 2011 Acta Mater. 59 6480

    [17]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [18]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [19]

    Jing Q, Xu Y, Zhang X Y, Li G, Li L X, Xu Z, Ma M Z, Liu R P 2009 Chin. Phys. Lett. 26 086109

    [20]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philos. Mag. 89 109

    [21]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [22]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [23]

    Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 104509

    [24]

    Tian H, Zhang C, Wang L, Zhao J J, Dong C, Wen B, Wang Q 2011 J. Appl. Phys. 109 123520

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [27]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [28]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [29]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [30]

    Pan S P, Qin J Y, Wang W M, Gu T K 2012 J. Non-Cryst. Solids 358 1873

    [31]

    Doye J P K, Wales D J 2003 J. Chem. Phys. 118 2792

    [32]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 J. Phys. Chem. A 112 12326

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Park E S, Kim D H, Kim W T 2005 Appl. Phys. Lett. 86 061907

    [4]

    Xia M X, Meng Q G, Zhang S G, Ma C L, Li J G 2006 Acta Phys. Sin. 55 6543 (in Chinese) [夏明许, 孟庆格, 张曙光, 马朝利, 李建国 2006 物理学报 55 6543]

    [5]

    Han G, Qiang J B, Wang Q, Wang Y M, Xia J H, Zhu C L, Quan S G, Dong C 2012 Acta Phys. Sin. 61 036402 (in Chinese) [韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯 2012 物理学报 61 036402]

    [6]

    Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 56 1543 (in Chinese) [王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒 2006 物理学报 56 1543]

    [7]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949

    [8]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [9]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [10]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [11]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [12]

    Yang L, Bian X F, Pan S P, Qin J Y 2012 Acta Phys. Sin. 61 036101 (in Chinese) [杨磊, 边秀房, 潘少鹏, 秦敬玉 2012 物理学报 61 036101]

    [13]

    Wang L, Zhang Y N, Mao X M, Peng C X 2007 Chin. Phys. Lett. 24 2319

    [14]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [15]

    Ding J, Cheng Y Q, Sheng H W, Ma E 2012 Phys. Rev. B 85 060201

    [16]

    Liu X J, Xu Y, Lu Z P, Hui X, Chen G L, Zheng G P, Liu C T 2011 Acta Mater. 59 6480

    [17]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [18]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [19]

    Jing Q, Xu Y, Zhang X Y, Li G, Li L X, Xu Z, Ma M Z, Liu R P 2009 Chin. Phys. Lett. 26 086109

    [20]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philos. Mag. 89 109

    [21]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [22]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [23]

    Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 104509

    [24]

    Tian H, Zhang C, Wang L, Zhao J J, Dong C, Wen B, Wang Q 2011 J. Appl. Phys. 109 123520

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [27]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [28]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [29]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [30]

    Pan S P, Qin J Y, Wang W M, Gu T K 2012 J. Non-Cryst. Solids 358 1873

    [31]

    Doye J P K, Wales D J 2003 J. Chem. Phys. 118 2792

    [32]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 J. Phys. Chem. A 112 12326

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1495
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-17
  • 修回日期:  2013-06-30
  • 刊出日期:  2013-10-05

快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪

  • 1. 湖南大学材料科学与工程学院, 长沙 410082
    基金项目: 

    国家自然科学基金(批准号:51071065)和高等学校博士学科点专项科研基金(批准号:20100161110001)资助的课题.

摘要: 采用分子动力学方法模拟研究了液态Cu64Zr36合金在冷速50 K/ns下 的快速凝固过程, 并通过双体分布函数、Honeycutt-Andersen (H-A) 键型指数和团簇类型指数对其微结构演变特性进行了分析. 液态与快凝玻璃合金的主要原子组态都是二十面体(12 0 12 0)及其变形结构 (12 8/1551 2/1541 2/1431), 其中比例最高的是Cu芯Cu8Zr5基本原子团, 其次是Cu7Zr6和Cu9Zr4团簇; 并且由这些二十面体基本原子团铰链形成的中程序, 其尺寸分布在液相和固相中分别呈现出13, 19, 25,···和13, 19, 23, 25, 29, 37,···的幻数特征. 团簇的演化与跟踪分析发现: 没有任何团簇能从液态直接遗传到固态合金, 遗传的起始温度出现在Tm–Tg过冷液相区. 二十面体团簇的遗传主要以完全和直接遗传为主, 并且一个明显的增加发生在Tg附近. 在玻璃化转变温度Tg以下, (12 0 12 0) 二十面体比 (12 8/1551 2/1541 2/1431) 变形二十面体具有更高的结构遗传能力, 但仅有少部分在遗传过程中能保持化学成分的恒定. 通过部分遗传, 某些二十面体中程序甚至也能从过冷液体中被遗传到玻璃合金.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回