搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量

陈修国 袁奎 杜卫超 陈军 江浩 张传维 刘世元

基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量

陈修国, 袁奎, 杜卫超, 陈军, 江浩, 张传维, 刘世元
PDF
导出引用
导出核心图
  • 为了实现有效的工艺监控, 在批量化纳米制造中对纳米结构的关键尺寸等几何参数进行快速、低成本、非破坏性的精确测量具有十分重要的意义. 光学散射仪目前已经发展成为批量化纳米制造中纳米结构几何参数在线测量的一种重要手段. 传统光学散射测量技术只能获得光斑照射区内待测参数的平均值, 而对小于光斑照射区内样品的微小变化难以准确分析. 此外, 由于其只能进行单点测试, 必须要移动样品台进行扫描才能获得大面积区域内待测参数的分布信息, 从而严重影响测试效率. 为此, 本文将传统光学散射测量技术与显微成像技术相结合, 提出利用Mueller矩阵成像椭偏仪实现纳米结构几何参数的大面积快速准确测量. Mueller矩阵成像椭偏仪具有传统Mueller矩阵椭偏仪测量信息全、光谱灵敏度高的优势, 同时又有显微成像技术高空间分辨率的优点, 有望为批量化纳米制造中纳米结构几何参数提供一种大面积、快速、低成本、非破坏性的精确测量新途径.
      通信作者: 江浩, hjiang@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51475191, 51405172)、国家重大科学仪器设备开发专项(批准号: 2011YQ160002)、中国博士后科学基金(批准号: 2014M560607, 2015T80791)、湖北省自然科学基金(批准号: 2015CFB278)和教育部长江学者与创新团队发展计划(批准号: IRT13017)资助的课题.
    [1]

    Weidner P, Kasic A, Hingst T, Ehlers C, Philipp S, Marschner T, Moert M 2008 Proc. SPIE 7155 71550Y

    [2]

    Rau H, Wu C H 2005 Int. J. Adv. Manuf. Technol. 25 940

    [3]

    Azzam R M A, Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: North-Holland) pp148-152

    [4]

    Zhang Q X, Wei W S, Ruan F P 2011 Chin. Phys. B 20 047802

    [5]

    Zhang J T, Wu X J, Li Y 2012 Chin. Phys. B 21 010701

    [6]

    Zhang T, Yin J, Ding L H, Zhang W F 2013 Chin. Phys. B 22 117801

    [7]

    Li J, Tang J Y, Pei W, Wei X H, Huang F 2015 Acta Phys. Sin. 64 110702 (in Chinese) [李江, 唐敬友, 裴旺, 魏贤华, 黄峰 2015 物理学报 64 110702]

    [8]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983

    [9]

    Niu X, Jakatdar N, Bao J W, Spanos C J 2001 IEEE Trans. Semicond. Manuf. 14 97

    [10]

    Gustin C, Leunissen L H A, Mercha A, Decoutere S, Lorusso G 2008 Thin Solid Films 516 3690

    [11]

    Leung G, Chui C O 2011 IEEE Electron Dev. Lett. 32 1489

    [12]

    Silver R, Germer T, Attota R, Barnes B M, Bundary B, Allgair J, Marx E, Jun J 2007 Proc. SPIE 6518 65180U

    [13]

    Novikova T, de Martino A, Ossikovski R, Drévillon B 2005 Eur. Phys. J. Appl. Phys. 31 63

    [14]

    Novikova T, de Martino A, Hatit S B, Drévillon B 2006 Appl. Opt. 45 3688

    [15]

    Novikova T, de Martino A, Bulkin P, Nguyen Q, Drévillon B 2007 Opt. Express 15 2033

    [16]

    Kim Y N, Paek J S, Rabello S, Lee S, Hu J, Liu Z, Hao Y, McGahan W 2009 Opt. Express 17 21336

    [17]

    Li J, Hwu J J, Liu Y, Rabello S, Liu Z, Hu J 2010 J. Micro Nanolith. MEMS MOEMS 9 041305

    [18]

    Liu S Y, Chen X G, Zhang C W 2015 Thin Solid Films 584 176

    [19]

    Chen X G, Zhang C W, Liu S Y 2013 Appl. Phys. Lett. 103 151605

    [20]

    Chen X G, Liu S Y, Zhang C W, Wu Y P, Ma Z C, Sun T Y, Xu Z M 2014 Acta Phys. Sin. 63 180701 (in Chinese) [陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋 2014 物理学报 63 180701]

    [21]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W N, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101 (in Chinese) [马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [22]

    Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic Z V, Saxl O 2009 J. Nanopart. Res. 11 1521

    [23]

    Mishima T, Kao K C 1982 Opt. Eng. 21 1074

    [24]

    Jin G, Jansson R, Arwin H 1996 Rev. Sci. Instrum. 67 2930

    [25]

    Arteaga O, Baldrís M, Antó J, Canillas A, Pascual E, Bertran E 2014 Appl. Opt. 53 2236

    [26]

    Liu S Y, Du W C, Chen X G, Jiang H, Zhang C W 2015 Opt. Express 23 17316

    [27]

    Zhou Y, Valiokas R, Liedberg B 2004 Langmuir 20 6206

    [28]

    Yu Y, Jin G 2005 J. Colloid Interface Sci. 283 477

    [29]

    Wurstbauer U, Röling C, Wurstbauer U, Wegscheider W, Vaupel M, Thiesen P H, Weiss D 2010 Appl. Phys. Lett. 97 231901

    [30]

    Shan A, Fried M, Juhász G, Major C, Polgár O, Németh á, Petrik P, Dahal L R, Chen J, Huang Z, Podraza N J, Collins R W 2014 IEEE J. Photovolt. 4 355

    [31]

    Bae Y M, Park K W, Oh B K, Lee W H, Choi J W 2005 Colloids Surf. A 257-258 19

    [32]

    Twietmeyer K M, Chipman R A, Elsner A E, Zhao Y, van Nasdale D 2008 Opt. Express 16 21339

    [33]

    Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, de Martino A 2013 Appl. Phys. Lett. 102 241103

    [34]

    Collins R W, Koh J 1999 J. Opt. Soc. Am. A 16 1997

    [35]

    Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications (New York: Wiley) p121

    [36]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [37]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [38]

    Liu S Y, Ma Y, Chen X G, Zhang C W 2012 Opt. Eng. 51 081504

    [39]

    Chen X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [陈修国 2013 博士学位论文 (武汉: 华中科技大学)]

    [40]

    Zhang C W, Liu S Y, Shi T L, Tang Z R 2009 J. Opt. Soc. Am. A 26 2327

    [41]

    Chen X G, Liu S Y, Zhang C W, Zhu J L 2013 Measurement 46 2638

    [42]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 Appl. Opt. 52 6727

    [43]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 J. Appl. Phys. 83 3323

    [44]

    Letnes P A, Maradudin A A, Nordam T, Simonsen I 2012 Phys. Rev. A 86 031803

    [45]

    Chen X G, Liu S Y, Gu H G, Zhang C W 2014 Thin Solid Films 571 653

    [46]

    Gil J J, Bernabeu E 1986 Opt. Acta 33 185

  • [1]

    Weidner P, Kasic A, Hingst T, Ehlers C, Philipp S, Marschner T, Moert M 2008 Proc. SPIE 7155 71550Y

    [2]

    Rau H, Wu C H 2005 Int. J. Adv. Manuf. Technol. 25 940

    [3]

    Azzam R M A, Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: North-Holland) pp148-152

    [4]

    Zhang Q X, Wei W S, Ruan F P 2011 Chin. Phys. B 20 047802

    [5]

    Zhang J T, Wu X J, Li Y 2012 Chin. Phys. B 21 010701

    [6]

    Zhang T, Yin J, Ding L H, Zhang W F 2013 Chin. Phys. B 22 117801

    [7]

    Li J, Tang J Y, Pei W, Wei X H, Huang F 2015 Acta Phys. Sin. 64 110702 (in Chinese) [李江, 唐敬友, 裴旺, 魏贤华, 黄峰 2015 物理学报 64 110702]

    [8]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983

    [9]

    Niu X, Jakatdar N, Bao J W, Spanos C J 2001 IEEE Trans. Semicond. Manuf. 14 97

    [10]

    Gustin C, Leunissen L H A, Mercha A, Decoutere S, Lorusso G 2008 Thin Solid Films 516 3690

    [11]

    Leung G, Chui C O 2011 IEEE Electron Dev. Lett. 32 1489

    [12]

    Silver R, Germer T, Attota R, Barnes B M, Bundary B, Allgair J, Marx E, Jun J 2007 Proc. SPIE 6518 65180U

    [13]

    Novikova T, de Martino A, Ossikovski R, Drévillon B 2005 Eur. Phys. J. Appl. Phys. 31 63

    [14]

    Novikova T, de Martino A, Hatit S B, Drévillon B 2006 Appl. Opt. 45 3688

    [15]

    Novikova T, de Martino A, Bulkin P, Nguyen Q, Drévillon B 2007 Opt. Express 15 2033

    [16]

    Kim Y N, Paek J S, Rabello S, Lee S, Hu J, Liu Z, Hao Y, McGahan W 2009 Opt. Express 17 21336

    [17]

    Li J, Hwu J J, Liu Y, Rabello S, Liu Z, Hu J 2010 J. Micro Nanolith. MEMS MOEMS 9 041305

    [18]

    Liu S Y, Chen X G, Zhang C W 2015 Thin Solid Films 584 176

    [19]

    Chen X G, Zhang C W, Liu S Y 2013 Appl. Phys. Lett. 103 151605

    [20]

    Chen X G, Liu S Y, Zhang C W, Wu Y P, Ma Z C, Sun T Y, Xu Z M 2014 Acta Phys. Sin. 63 180701 (in Chinese) [陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋 2014 物理学报 63 180701]

    [21]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W N, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101 (in Chinese) [马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [22]

    Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic Z V, Saxl O 2009 J. Nanopart. Res. 11 1521

    [23]

    Mishima T, Kao K C 1982 Opt. Eng. 21 1074

    [24]

    Jin G, Jansson R, Arwin H 1996 Rev. Sci. Instrum. 67 2930

    [25]

    Arteaga O, Baldrís M, Antó J, Canillas A, Pascual E, Bertran E 2014 Appl. Opt. 53 2236

    [26]

    Liu S Y, Du W C, Chen X G, Jiang H, Zhang C W 2015 Opt. Express 23 17316

    [27]

    Zhou Y, Valiokas R, Liedberg B 2004 Langmuir 20 6206

    [28]

    Yu Y, Jin G 2005 J. Colloid Interface Sci. 283 477

    [29]

    Wurstbauer U, Röling C, Wurstbauer U, Wegscheider W, Vaupel M, Thiesen P H, Weiss D 2010 Appl. Phys. Lett. 97 231901

    [30]

    Shan A, Fried M, Juhász G, Major C, Polgár O, Németh á, Petrik P, Dahal L R, Chen J, Huang Z, Podraza N J, Collins R W 2014 IEEE J. Photovolt. 4 355

    [31]

    Bae Y M, Park K W, Oh B K, Lee W H, Choi J W 2005 Colloids Surf. A 257-258 19

    [32]

    Twietmeyer K M, Chipman R A, Elsner A E, Zhao Y, van Nasdale D 2008 Opt. Express 16 21339

    [33]

    Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, de Martino A 2013 Appl. Phys. Lett. 102 241103

    [34]

    Collins R W, Koh J 1999 J. Opt. Soc. Am. A 16 1997

    [35]

    Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications (New York: Wiley) p121

    [36]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [37]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [38]

    Liu S Y, Ma Y, Chen X G, Zhang C W 2012 Opt. Eng. 51 081504

    [39]

    Chen X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [陈修国 2013 博士学位论文 (武汉: 华中科技大学)]

    [40]

    Zhang C W, Liu S Y, Shi T L, Tang Z R 2009 J. Opt. Soc. Am. A 26 2327

    [41]

    Chen X G, Liu S Y, Zhang C W, Zhu J L 2013 Measurement 46 2638

    [42]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 Appl. Opt. 52 6727

    [43]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 J. Appl. Phys. 83 3323

    [44]

    Letnes P A, Maradudin A A, Nordam T, Simonsen I 2012 Phys. Rev. A 86 031803

    [45]

    Chen X G, Liu S Y, Gu H G, Zhang C W 2014 Thin Solid Films 571 653

    [46]

    Gil J J, Bernabeu E 1986 Opt. Acta 33 185

  • [1] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [2] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [3] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [4] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [5] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [6] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [7] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [8] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [9] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [10] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [11] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [12] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [13] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [14] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [15] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [16] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [17] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191908
    [18] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
  • 引用本文:
    Citation:
计量
  • 文章访问数:  618
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-14
  • 修回日期:  2016-01-05
  • 刊出日期:  2016-04-05

基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量

  • 1. 华中科技大学, 数字制造装备与技术国家重大实验室, 武汉 430074;
  • 2. 武汉颐光科技有限公司, 武汉 430075
  • 通信作者: 江浩, hjiang@hust.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 51475191, 51405172)、国家重大科学仪器设备开发专项(批准号: 2011YQ160002)、中国博士后科学基金(批准号: 2014M560607, 2015T80791)、湖北省自然科学基金(批准号: 2015CFB278)和教育部长江学者与创新团队发展计划(批准号: IRT13017)资助的课题.

摘要: 为了实现有效的工艺监控, 在批量化纳米制造中对纳米结构的关键尺寸等几何参数进行快速、低成本、非破坏性的精确测量具有十分重要的意义. 光学散射仪目前已经发展成为批量化纳米制造中纳米结构几何参数在线测量的一种重要手段. 传统光学散射测量技术只能获得光斑照射区内待测参数的平均值, 而对小于光斑照射区内样品的微小变化难以准确分析. 此外, 由于其只能进行单点测试, 必须要移动样品台进行扫描才能获得大面积区域内待测参数的分布信息, 从而严重影响测试效率. 为此, 本文将传统光学散射测量技术与显微成像技术相结合, 提出利用Mueller矩阵成像椭偏仪实现纳米结构几何参数的大面积快速准确测量. Mueller矩阵成像椭偏仪具有传统Mueller矩阵椭偏仪测量信息全、光谱灵敏度高的优势, 同时又有显微成像技术高空间分辨率的优点, 有望为批量化纳米制造中纳米结构几何参数提供一种大面积、快速、低成本、非破坏性的精确测量新途径.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回