搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学气相沉积法制备的石墨烯晶畴的氢气刻蚀

王彬 冯雅辉 王秋实 张伟 张丽娜 马晋文 张浩然 于广辉 王桂强

化学气相沉积法制备的石墨烯晶畴的氢气刻蚀

王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强
PDF
导出引用
  • 利用化学气相沉积法在抛光铜衬底上制备出六角形石墨烯晶畴, 并且在高温条件下对石墨烯晶畴进行氢气刻蚀, 利用光学显微镜和扫描电子显微镜对石墨烯晶畴进行观测, 发现高温条件下石墨烯晶畴表面能够被氢气刻蚀出网络状和线状结构的刻蚀条纹. 通过电子背散射衍射测试证明了刻蚀条纹的形态、密度与铜衬底的晶向有密切关系. 通过对比实验证明了石墨烯表面上的刻蚀条纹是由于石墨烯和铜衬底的热膨胀系数不同, 在降温过程中, 石墨烯表面形成了褶皱, 褶皱在高温氢气气氛下发生氢化反应形成的. 对转移到二氧化硅衬底的石墨烯晶畴进行原子力显微镜测试, 测试结果表明刻蚀条纹的形貌、密度与石墨烯表面褶皱的形貌、密度十分相似. 进一步证明了刻蚀条纹是由于褶皱结构被氢气刻蚀引起的. 实验结果表明, 即使在六角形石墨烯晶畴表面也存在褶皱和点缺陷. 本文提供了一种便捷的方法来观察铜衬底上石墨烯褶皱的分布与形态; 同时, 为进一步提高化学气相沉积法制备石墨烯的质量提供了更多参考.
      通信作者: 王桂强, wgqiang@bhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61136005)资助的课题.
    [1]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Schwierz F 2010 Nature Nanotech. 5 487

    [4]

    Yin W H, Wang Y B, Han Q, Yang X H 2015 Chin. Phys. B 24 068101

    [5]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese) [冯伟, 张戎, 曹俊诚 2015 物理学报 64 229501]

    [6]

    Yang X X, Sun J D, Qin H, L L, Su L N, Yan B, Li X X, Zhang Z P, Fang J Y 2015 Chin. Phys. B 24 047206

    [7]

    Zhao T, Zhong R B, Hu M, Chen X X, Zhang P, Gong S, Liu S G 2015 Chin. Phys. B 24 094102

    [8]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [9]

    Li X S, Magnuson C W, Venugopal A, An J H, Suk J W, Han B Y, Borysiak M, Cai W W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, Voelkl E, Colombo L, Ruoff R S 2010 Nano Lett. 10 4328

    [10]

    Usachov D, Dobrotvorskii A, Varykhalov A, Rader O, Gudat W, Shikin A, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [11]

    Wang B, Zhang Y H, Chen Z Y, Wu Y W, Jin Z, Liu X Y, Hu L Z, Yu G H 2013 Mater. Lett. 93 165

    [12]

    Wu Y W, Yu G H, Wang H M, Wang B, Chen Z Y, Zhang Y H, Wang B, Shi X P, Jin Z, Liu X Y 2012 Carbon 50 5226

    [13]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [14]

    Oznuluer T, Pince E, Polat E O, Balci O, Salihoglu O, Kocabas C 2011 Appl. Phys. Lett. 98 183101

    [15]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nature Commun. 3 699

    [16]

    Zhao Y, Wang G, Yang H C, An T L, Chen M J, Yu F, Tao L, Yang J K, Wei T B, Duan R F, Sun L F 2014 Chin. Phys. B 23 096802

    [17]

    Zhang Y H, Chen Z Y, Wang B, Wu Y W, Jin Z, Liu X Y, Yu G H 2013 Mater. Lett. 96 149

    [18]

    Li X S, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J.Am.Chem.Soc. 133 2816

    [19]

    Zhu W J, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H G, Jet T, Avouris P 2012 Nano Lett. 12 3431

    [20]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801]

    [21]

    Wang B, Zhang Y H, Zhang H R, Chen Z Y, Xie X M, Sui Y P, Li X L, Yu G H, Hu L Z, Jin Z, Liu X Y 2014 Carbon 70 75

    [22]

    Zhang Y, Li Z, Kim P, Zhang L Y, Zhou C W 2012 Acs Nano 6 126

  • [1]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Schwierz F 2010 Nature Nanotech. 5 487

    [4]

    Yin W H, Wang Y B, Han Q, Yang X H 2015 Chin. Phys. B 24 068101

    [5]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese) [冯伟, 张戎, 曹俊诚 2015 物理学报 64 229501]

    [6]

    Yang X X, Sun J D, Qin H, L L, Su L N, Yan B, Li X X, Zhang Z P, Fang J Y 2015 Chin. Phys. B 24 047206

    [7]

    Zhao T, Zhong R B, Hu M, Chen X X, Zhang P, Gong S, Liu S G 2015 Chin. Phys. B 24 094102

    [8]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [9]

    Li X S, Magnuson C W, Venugopal A, An J H, Suk J W, Han B Y, Borysiak M, Cai W W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, Voelkl E, Colombo L, Ruoff R S 2010 Nano Lett. 10 4328

    [10]

    Usachov D, Dobrotvorskii A, Varykhalov A, Rader O, Gudat W, Shikin A, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [11]

    Wang B, Zhang Y H, Chen Z Y, Wu Y W, Jin Z, Liu X Y, Hu L Z, Yu G H 2013 Mater. Lett. 93 165

    [12]

    Wu Y W, Yu G H, Wang H M, Wang B, Chen Z Y, Zhang Y H, Wang B, Shi X P, Jin Z, Liu X Y 2012 Carbon 50 5226

    [13]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [14]

    Oznuluer T, Pince E, Polat E O, Balci O, Salihoglu O, Kocabas C 2011 Appl. Phys. Lett. 98 183101

    [15]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nature Commun. 3 699

    [16]

    Zhao Y, Wang G, Yang H C, An T L, Chen M J, Yu F, Tao L, Yang J K, Wei T B, Duan R F, Sun L F 2014 Chin. Phys. B 23 096802

    [17]

    Zhang Y H, Chen Z Y, Wang B, Wu Y W, Jin Z, Liu X Y, Yu G H 2013 Mater. Lett. 96 149

    [18]

    Li X S, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J.Am.Chem.Soc. 133 2816

    [19]

    Zhu W J, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H G, Jet T, Avouris P 2012 Nano Lett. 12 3431

    [20]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801]

    [21]

    Wang B, Zhang Y H, Zhang H R, Chen Z Y, Xie X M, Sui Y P, Li X L, Yu G H, Hu L Z, Jin Z, Liu X Y 2014 Carbon 70 75

    [22]

    Zhang Y, Li Z, Kim P, Zhang L Y, Zhou C W 2012 Acs Nano 6 126

  • [1] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [2] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [3] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [4] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [5] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [6] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [7] 许宏, 苑争一, 黄彤飞, 王啸, 陈正先, 韦进, 张翔, 黄元. 层状材料褶皱对几种地质活动机理研究的启示. 物理学报, 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [8] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [9] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [10] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200781
    [11] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [12] 弓志娜, 云峰, 丁文, 张烨, 郭茂峰, 刘硕, 黄亚平, 刘浩, 王帅, 冯仑刚, 王江腾. 光致电化学法提高垂直结构发光二极管出光效率的研究. 物理学报, 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [13] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响. 物理学报, 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [14] 郑树琳, 宋亦旭, 孙晓民. 基于三维元胞模型的刻蚀工艺表面演化方法. 物理学报, 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [15] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [16] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究. 物理学报, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [17] 马丙现, 姚 宁, 杨仕娥, 鲁占灵, 樊志勤, 张兵临. 氢的强化刻蚀对金刚石薄膜品质的影响与sp2杂化碳原子的存在形态. 物理学报, 2004, 53(7): 2287-2291. doi: 10.7498/aps.53.2287
    [18] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [20] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1497
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24
  • 修回日期:  2016-01-30
  • 刊出日期:  2016-05-05

化学气相沉积法制备的石墨烯晶畴的氢气刻蚀

  • 1. 渤海大学新能源学院, 辽宁省光电功能材料检测与技术重点实验室, 锦州 121013;
  • 2. 上海微系统与信息技术研究所, 功能材料国家重点实验室, 上海 200050
  • 通信作者: 王桂强, wgqiang@bhu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61136005)资助的课题.

摘要: 利用化学气相沉积法在抛光铜衬底上制备出六角形石墨烯晶畴, 并且在高温条件下对石墨烯晶畴进行氢气刻蚀, 利用光学显微镜和扫描电子显微镜对石墨烯晶畴进行观测, 发现高温条件下石墨烯晶畴表面能够被氢气刻蚀出网络状和线状结构的刻蚀条纹. 通过电子背散射衍射测试证明了刻蚀条纹的形态、密度与铜衬底的晶向有密切关系. 通过对比实验证明了石墨烯表面上的刻蚀条纹是由于石墨烯和铜衬底的热膨胀系数不同, 在降温过程中, 石墨烯表面形成了褶皱, 褶皱在高温氢气气氛下发生氢化反应形成的. 对转移到二氧化硅衬底的石墨烯晶畴进行原子力显微镜测试, 测试结果表明刻蚀条纹的形貌、密度与石墨烯表面褶皱的形貌、密度十分相似. 进一步证明了刻蚀条纹是由于褶皱结构被氢气刻蚀引起的. 实验结果表明, 即使在六角形石墨烯晶畴表面也存在褶皱和点缺陷. 本文提供了一种便捷的方法来观察铜衬底上石墨烯褶皱的分布与形态; 同时, 为进一步提高化学气相沉积法制备石墨烯的质量提供了更多参考.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回