搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

谷倩倩 阮莹 代富平

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

谷倩倩, 阮莹, 代富平
PDF
导出引用
导出核心图
  • 采用落管无容器处理技术实现了Fe67.5Al22.8Nb9.7三元合金在微重力条件下的快速凝固,获得了直径为401000 m的合金液滴.实验中合金液滴的过冷度范围为50216 K,冷却速率随着液滴直径的减小由1.23103 Ks-1增大到5.53105 Ks-1.研究发现,Fe67.5Al22.8Nb9.7 合金液滴的凝固组织均由Nb(Fe,Al)2相和( Fe)相组成,且随着液滴直径的减小,初生Nb(Fe,Al)2相由树枝晶转变为等轴晶,共晶组织发生了约3倍的细化且生长特征由层片共晶向碎断共晶转变;硬质初生Nb(Fe,Al)2相的析出有效提高了合金的显微硬度.与电磁悬浮条件下同过冷合金的凝固组织对比发现,落管条件下的合金液滴凝固组织更细化,使得合金显微硬度提高了2%6%.
      通信作者: 阮莹, ruany@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51327901,U1660108,51671161)、航空科学基金(批准号:2014ZF53069)和陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)资助的课题.
    [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

  • [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

  • [1] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [2] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [3] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [4] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [5] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [6] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [7] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [8] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [9] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [10] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [11] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [12] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [13] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [14] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [16] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [17] 杨 春, 陈 民, 过增元, 姚文静, 韩秀君, 魏炳波. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
    [18] 李路远, 阮莹, 魏炳波. 液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律. 物理学报, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [19] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究. 物理学报, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [20] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究. 物理学报, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
  • 引用本文:
    Citation:
计量
  • 文章访问数:  431
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-02
  • 刊出日期:  2017-05-20

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

  • 1. 西北工业大学应用物理系, 西安 710072
  • 通信作者: 阮莹, ruany@nwpu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51327901,U1660108,51671161)、航空科学基金(批准号:2014ZF53069)和陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)资助的课题.

摘要: 采用落管无容器处理技术实现了Fe67.5Al22.8Nb9.7三元合金在微重力条件下的快速凝固,获得了直径为401000 m的合金液滴.实验中合金液滴的过冷度范围为50216 K,冷却速率随着液滴直径的减小由1.23103 Ks-1增大到5.53105 Ks-1.研究发现,Fe67.5Al22.8Nb9.7 合金液滴的凝固组织均由Nb(Fe,Al)2相和( Fe)相组成,且随着液滴直径的减小,初生Nb(Fe,Al)2相由树枝晶转变为等轴晶,共晶组织发生了约3倍的细化且生长特征由层片共晶向碎断共晶转变;硬质初生Nb(Fe,Al)2相的析出有效提高了合金的显微硬度.与电磁悬浮条件下同过冷合金的凝固组织对比发现,落管条件下的合金液滴凝固组织更细化,使得合金显微硬度提高了2%6%.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回