搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

谷倩倩 阮莹 代富平

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

谷倩倩, 阮莹, 代富平
PDF
导出引用
导出核心图
  • 采用落管无容器处理技术实现了Fe67.5Al22.8Nb9.7三元合金在微重力条件下的快速凝固,获得了直径为401000 m的合金液滴.实验中合金液滴的过冷度范围为50216 K,冷却速率随着液滴直径的减小由1.23103 Ks-1增大到5.53105 Ks-1.研究发现,Fe67.5Al22.8Nb9.7 合金液滴的凝固组织均由Nb(Fe,Al)2相和( Fe)相组成,且随着液滴直径的减小,初生Nb(Fe,Al)2相由树枝晶转变为等轴晶,共晶组织发生了约3倍的细化且生长特征由层片共晶向碎断共晶转变;硬质初生Nb(Fe,Al)2相的析出有效提高了合金的显微硬度.与电磁悬浮条件下同过冷合金的凝固组织对比发现,落管条件下的合金液滴凝固组织更细化,使得合金显微硬度提高了2%6%.
      通信作者: 阮莹, ruany@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51327901,U1660108,51671161)、航空科学基金(批准号:2014ZF53069)和陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)资助的课题.
    [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

  • [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1244
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-02
  • 刊出日期:  2017-05-05

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

  • 1. 西北工业大学应用物理系, 西安 710072
  • 通信作者: 阮莹, ruany@nwpu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51327901,U1660108,51671161)、航空科学基金(批准号:2014ZF53069)和陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)资助的课题.

摘要: 采用落管无容器处理技术实现了Fe67.5Al22.8Nb9.7三元合金在微重力条件下的快速凝固,获得了直径为401000 m的合金液滴.实验中合金液滴的过冷度范围为50216 K,冷却速率随着液滴直径的减小由1.23103 Ks-1增大到5.53105 Ks-1.研究发现,Fe67.5Al22.8Nb9.7 合金液滴的凝固组织均由Nb(Fe,Al)2相和( Fe)相组成,且随着液滴直径的减小,初生Nb(Fe,Al)2相由树枝晶转变为等轴晶,共晶组织发生了约3倍的细化且生长特征由层片共晶向碎断共晶转变;硬质初生Nb(Fe,Al)2相的析出有效提高了合金的显微硬度.与电磁悬浮条件下同过冷合金的凝固组织对比发现,落管条件下的合金液滴凝固组织更细化,使得合金显微硬度提高了2%6%.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回