搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实验条件不完美对薛定谔猫态制备的影响

张娜娜 李淑静 闫红梅 何亚亚 王海

实验条件不完美对薛定谔猫态制备的影响

张娜娜, 李淑静, 闫红梅, 何亚亚, 王海
PDF
导出引用
导出核心图
  • 薛定谔猫态是一类重要的非经典光场,实验上可以通过真空压缩态减光子的方案获得.本文从理论上研究了实验条件对制备薛定谔猫态的影响,主要考虑了包括压缩态的压缩度和纯度、单光子探测器的效率及噪声以及零拍探测器的效率等诸多因素的影响.理想情况下通过减光子方案制备得到的薛定谔猫态为奇光子数态,其相空间原点的Wigner函数为负值是其非经典特性的重要判据,而保真度可以度量制备态与理想猫态之间的相似程度.在压缩态为非纯态以及单光子探测器为商用低效率阈值探测器的情况下,计算了制备猫态的保真度、Wigner函数及其相空间原点处W(0)的表达式,分析了实验条件对薛定谔猫态制备的影响,为制备高质量的薛定谔猫态提供了理论指导.
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11475109,11834010,11604191)和山西省“1331工程”重点学科建设计划资助的课题.
    [1]

    Yurke B, Schleich W, Walls D F 1990 Phys. Rev. A 42 1703

    [2]

    Song S, Caves C M, Yurke B 1990 Phys. Rev. A 41 5261

    [3]

    Minganti F, Bartolo N, Lolli J, Casteels W, Ciuti C 2016 Sci. Rep. 6 26987

    [4]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 697

    [5]

    van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313

    [6]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [7]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [8]

    Monroe C, Meekhof D M, King B E, Wineland D J 1996 Science 272 1131

    [9]

    Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Martinis J M, Cleland A N 2009 Nature 459 546

    [10]

    Ourjoumtsev A, Brouri R T, Laurat J, Grangier P 2006 Science 312 83

    [11]

    Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A, Sasaki M 2008 Phys. Rev. Lett. 101 233605

    [12]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604

    [13]

    Kim M S, Park E, Knight P L, Jeong H 2005 Phys. Rev. A 71 043805

    [14]

    Suzuki S, Tsujino K, Kannari F, Sasaki M 2006 Opt. Commun. 259 758

    [15]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568

    [16]

    Dakna M, Anhut T, Opatrny T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184

    [17]

    Wenger J, Tualle-Brouri R, Grangier P 2004 Phys. Rev. Lett. 92 153601

    [18]

    W Asavanant, K Nakashima, Y Shiozawa, J Yoshikawa, A Furusawa 2017 Opt. Express 25 32227

    [19]

    Morin O, Liu J, Huang K, Barbosa F, Fabre C, Laurat J 2014 J. Vis. Exp. 87 e51224

    [20]

    Laghaout A, Neergaard-Nielsen J S, Rigas I, Kragh C, Tipsmark A, Andersen U L 2013 Phys. Rev. A 87 043826

    [21]

    Laghaout A, Neergaard-Nielsen J S, Rigas I 2013 Conference on Lasers and Electron-Optics Europe and International Quantum Electronics Conference,IEEE 1 1

    [22]

    Kim M S, Lee J, Munro W J 2002 Phys. Rev. A 66 030301

    [23]

    Hyukjoon K, Hyunseok J 2015 Phys. Rev. A 91 012340

    [24]

    Lee C T 1995 Phys. Rev. A 52 3374

  • [1]

    Yurke B, Schleich W, Walls D F 1990 Phys. Rev. A 42 1703

    [2]

    Song S, Caves C M, Yurke B 1990 Phys. Rev. A 41 5261

    [3]

    Minganti F, Bartolo N, Lolli J, Casteels W, Ciuti C 2016 Sci. Rep. 6 26987

    [4]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 697

    [5]

    van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313

    [6]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [7]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [8]

    Monroe C, Meekhof D M, King B E, Wineland D J 1996 Science 272 1131

    [9]

    Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Martinis J M, Cleland A N 2009 Nature 459 546

    [10]

    Ourjoumtsev A, Brouri R T, Laurat J, Grangier P 2006 Science 312 83

    [11]

    Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A, Sasaki M 2008 Phys. Rev. Lett. 101 233605

    [12]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604

    [13]

    Kim M S, Park E, Knight P L, Jeong H 2005 Phys. Rev. A 71 043805

    [14]

    Suzuki S, Tsujino K, Kannari F, Sasaki M 2006 Opt. Commun. 259 758

    [15]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568

    [16]

    Dakna M, Anhut T, Opatrny T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184

    [17]

    Wenger J, Tualle-Brouri R, Grangier P 2004 Phys. Rev. Lett. 92 153601

    [18]

    W Asavanant, K Nakashima, Y Shiozawa, J Yoshikawa, A Furusawa 2017 Opt. Express 25 32227

    [19]

    Morin O, Liu J, Huang K, Barbosa F, Fabre C, Laurat J 2014 J. Vis. Exp. 87 e51224

    [20]

    Laghaout A, Neergaard-Nielsen J S, Rigas I, Kragh C, Tipsmark A, Andersen U L 2013 Phys. Rev. A 87 043826

    [21]

    Laghaout A, Neergaard-Nielsen J S, Rigas I 2013 Conference on Lasers and Electron-Optics Europe and International Quantum Electronics Conference,IEEE 1 1

    [22]

    Kim M S, Lee J, Munro W J 2002 Phys. Rev. A 66 030301

    [23]

    Hyukjoon K, Hyunseok J 2015 Phys. Rev. A 91 012340

    [24]

    Lee C T 1995 Phys. Rev. A 52 3374

  • [1] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度. 物理学报, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [2] 林惇庆, 朱泽群, 王祖俭, 徐学翔. 相位型三头薛定谔猫态的量子统计属性. 物理学报, 2017, 66(10): 104201. doi: 10.7498/aps.66.104201
    [3] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数. 物理学报, 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [4] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数. 物理学报, 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [5] 孙敬文, 丁良恩, 杨庆怡, 韦联福. 增、减光子奇偶相干态的Wigner函数. 物理学报, 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [6] 张登玉, 高 峰, 郭 萍. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [7] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [8] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [9] 潘长宁, 方见树, 廖湘萍, 方卯发, 彭小芳. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [10] 杜少将, 夏云杰, 王光辉. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [11] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析. 物理学报, 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [12] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数. 物理学报, 2011, 60(9): 090305. doi: 10.7498/aps.60.090305
    [13] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉. 物理学报, 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [14] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性. 物理学报, 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [15] 文洪燕, 杨杨, 韦联福. 光学微腔中少光子数叠加态的耗散动力学. 物理学报, 2012, 61(18): 184206. doi: 10.7498/aps.61.184206
    [16] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [17] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [18] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, (): 004200. doi: 10.7498/aps.69.20200589
    [19] 董传华. 原子薛定谔猫态中角动量的压缩及其时间演化. 物理学报, 2003, 52(2): 337-344. doi: 10.7498/aps.52.337
    [20] 吴云翼, 陈明玉, 嵇英华, 罗海梅, 叶志清. 利用介观LC电路制备薛定谔猫态. 物理学报, 2004, 53(8): 2534-2538. doi: 10.7498/aps.53.2534
  • 引用本文:
    Citation:
计量
  • 文章访问数:  488
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 修回日期:  2018-09-27
  • 刊出日期:  2018-12-05

实验条件不完美对薛定谔猫态制备的影响

  • 1. 山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学, 极端光学协同创新中心, 太原 030006
    基金项目: 

    国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11475109,11834010,11604191)和山西省"1331工程"重点学科建设计划资助的课题.

摘要: 薛定谔猫态是一类重要的非经典光场,实验上可以通过真空压缩态减光子的方案获得.本文从理论上研究了实验条件对制备薛定谔猫态的影响,主要考虑了包括压缩态的压缩度和纯度、单光子探测器的效率及噪声以及零拍探测器的效率等诸多因素的影响.理想情况下通过减光子方案制备得到的薛定谔猫态为奇光子数态,其相空间原点的Wigner函数为负值是其非经典特性的重要判据,而保真度可以度量制备态与理想猫态之间的相似程度.在压缩态为非纯态以及单光子探测器为商用低效率阈值探测器的情况下,计算了制备猫态的保真度、Wigner函数及其相空间原点处W(0)的表达式,分析了实验条件对薛定谔猫态制备的影响,为制备高质量的薛定谔猫态提供了理论指导.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回