搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性Schr?dinger方程的包络形式解

李向正 张金良 王跃明 王明亮

非线性Schr?dinger方程的包络形式解

李向正, 张金良, 王跃明, 王明亮
PDF
导出引用
导出核心图
  • 扩展了最近提出的F展开方法以构造非线性演化方程更多的精确解, 即将F展开法中的一阶非线性常微分方程和单变量的有限幂级数代之以类似的一阶常微分方程组和两个变量的有限幂级数,这两个变量是一阶常微分方程组的解分量.作为例子, 用扩展的F展开法解非线性Schr?dinger方程,得到了很丰富的包络形式的精确解,特别是以两个不同的Jacobi椭圆函数表示的解.显然,扩展的F展开方法也可以解其他类型的非线性演化方程.
    • 基金项目: 河南省自然科学基金 (批准号:0111050200)、 河南省教育厅自然科学基金(批准 号:2003110003)和河南科技大学科学研究基金 (批准号:2003QN13)资助的课题.
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3044
  • PDF下载量:  568
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-03-05
  • 修回日期:  2004-04-10
  • 刊出日期:  2004-06-05

非线性Schr?dinger方程的包络形式解

  • 1. (1)河南科技大学数理系,洛阳 471003; (2)河南科技大学数理系,洛阳 471003兰州大学数学系,兰州 730000
    基金项目: 

    河南省自然科学基金 (批准号:0111050200)、 河南省教育厅自然科学基金(批准 号:2003110003)和河南科技大学科学研究基金 (批准号:2003QN13)资助的课题.

摘要: 扩展了最近提出的F展开方法以构造非线性演化方程更多的精确解, 即将F展开法中的一阶非线性常微分方程和单变量的有限幂级数代之以类似的一阶常微分方程组和两个变量的有限幂级数,这两个变量是一阶常微分方程组的解分量.作为例子, 用扩展的F展开法解非线性Schr?dinger方程,得到了很丰富的包络形式的精确解,特别是以两个不同的Jacobi椭圆函数表示的解.显然,扩展的F展开方法也可以解其他类型的非线性演化方程.

English Abstract

目录

    /

    返回文章
    返回