- 
				双波长激光光源在干涉测量、非线性频率变换产生中红外及太赫兹波段相干辐射等方面有重要的应用. 外腔面发射激光器具有输出功率高、光束质量好、发射波长可设计等突出优势, 非常适合用于双波长的产生. 用有源区为In0.185Ga0.815As/GaAs应变多量子阱、设计波长为960 nm, 以及有源区为In0.26Ga0.74As/GaAsP0.02应变多量子阱、设计波长为1080 nm的两块半导体增益芯片, 在一个共线Y型谐振腔中, 获得了激光波长分别为953 nm和1100 nm的双波长输出, 对应光谱线宽为1.1 nm和2.7 nm, 波长间隔147 nm. 室温下, 每块增益芯片的抽运吸收功率均为5.8 W时, 双波长激光器总的输出功率达到293 mW.Dual-wavelength laser sources have important applications in the interferometry and the nonlinear-frequency-conversion generated mid-infrared or terahertz-band coherent radiation. Vertical-external-cavity surface-emitting lasers own outstanding advantages such as high output power, good beam quality and flexible emission wavelength, which make them very suitable for dual-wavelength running. In this paper, we employ a collinear Y-type cavity to produce a dual-wavelength laser. There are two semiconductor gain chips in the resonant cavity, one has an active region of In0.185Ga0.815As/GaAs strained multiple quantum wells and a designed wavelength of 960 nm, and the other has an active region of In0.26Ga0.74As/GaAsP0.02 strained multiple quantum wells and a target wavelength of 1080 nm. The peak wavelength of the photoluminescence of chip 1 is 950 nm, which is 10 nm shorter than the designed wavelength under weak pump, and the peak wavelength of the photoluminescence of chip 2 is 1094 nm, which is 14 nm longer than the target wavelength under low pump. When the pump power is increased, the peak wavelengths of the photoluminescence of two gain chips are both red-shifted. The oscillating laser wavelengths are centered at 953 nm and 1100 nm, the corresponding full width at half maximum (FWHM) values of the laser spectra are 1.1 nm and 2.7 nm, respectively. The wavelength spacing of the dual-wavelength is 147 nm, and the related mid-infrared coherent radiation is about 7.1 μm on the assumption that the dual-wavelength laser is used for difference frequency generation. When the absorbed pump power of each gain chip is 5.8 W, the total output power of the dual-wavelength laser reaches 293 mW at room temperature.- 
													Keywords:
													
- external cavity surface emitting laser /
- dual wavelength /
- Y- cavity /
- polarizing beam splitter
 [1] 苏俊宏 2003 红外与激光工程 32 359  Google Scholar Google ScholarSu J 2003 Infrared Laser Eng. 32 359  Google Scholar Google Scholar[2] 李践 2005 中国生物医学工程学报 24 237  Google Scholar Google ScholarLi J 2005 Chin. J. Biomed. Eng. 24 237  Google Scholar Google Scholar[3] Mao Q, Lit J W Y 2002 IEEE Photonic Tech. L. 14 1252  Google Scholar Google Scholar[4] Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072  Google Scholar Google Scholar[5] Kawase K, Mizuno M, Sohma S, Takahashi H, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065  Google Scholar Google Scholar[6] Tittel F K, Richter D, Fried A 2003 Mid-infrared Laser Applications in Spectroscopy (Springer, Berlin, Heidelberg) pp458−529 [7] Beck M, Hofstetter D, Aellen T, Faist J, Oesterle U, Ilegems M, Gini E, Melchior H 2002 Science 295 301  Google Scholar Google Scholar[8] Willer U, Saraji M, Khorsandi A, Geiser P, Schade W 2006 Opt. Laser Eng. 44 699  Google Scholar Google Scholar[9] Waynant R W, Ilev I K, Gannot I 2001 Phil. Trans. R. Soc. A 359 635  Google Scholar Google Scholar[10] Jeon M Y, Kim N, Shin J, Jeong J S, Han S P, Lee C W, Leem Y A, Yee D S, Chun H S, Park K H 2010 Opt. Express 18 12291  Google Scholar Google Scholar[11] Jackson S D 2012 Nat. Photonics 6 423  Google Scholar Google Scholar[12] Lee B G, Belkin M A , Audet R , MacArthur J, Diehl L, Pflügl C, Capasso F, Oakley D C, Chapman D, Napoleone A, Bour D, Corzine S, Höfler G, Faist J 2007 Appl. Phys. Lett. 91 231101  Google Scholar Google Scholar[13] Schiessl U P, Rohr J 1999 Infrared Phys. Tech. 40 325  Google Scholar Google Scholar[14] Budni P A, Pomeranz L A, Lemons M L, Miller C A, Mosto J R, Chicklis E P 2000 J. Opt. Soc. Am 17 723  Google Scholar Google Scholar[15] Hastie J E, Calvez S, Dawson M D, Leinonen T, Laakso A, Lyytikäinen J, Pessa M 2005 Opt. Express 13 77  Google Scholar Google Scholar[16] Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, MurrayJ T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764  Google Scholar Google Scholar[17] Fallahi M, Fan L, Kaneda Y, Hessenius C, Hader J, Li H, Moloney J V, Kunert B, Stolz W, Koch S W, Murray J, Bedford R 2008 IEEE Photonic Tech. L. 20 1700  Google Scholar Google Scholar[18] Maclean A J, Kemp A J, Calvez S, Kim J Y, Kim T, Dawson M D, Burns D 2008 IEEE J. Quantum Elect. 44 216  Google Scholar Google Scholar[19] Fallahi M, Hessenius C, Kaneda Y, Hader J, Moloney J V, Kunert B, Stolz W, Koch S W 2009 Nonlinear Optics: Materials, Fundamentals and Applications Honolulu, Hawaii, July 12−17, 2009 pNThC1 [20] De Groot P J, McGarvey J A 1994 US Patent 5 371 [21] Keller U, Tropper A C 2006 Phys. Rep. 429 67  Google Scholar Google Scholar[22] Zhu R, Wang S, Qiu X, Chen X, Jiang M, Guo-Yu H, Zhang P, Song Y 2018 J. Lumin. 204 663  Google Scholar Google Scholar[23] Abram R H, Gardner K S, Riis E, Ferguson A I 2004 Opt. Express 12 5434  Google Scholar Google Scholar[24] Alfieri C G, Waldburger D, Golling M, Keller U 2018 IEEE Photonic Tech. L. 30 525  Google Scholar Google Scholar[25] Jasik A, Sokół A K, Broda A, Sankowska I, Wójcik-Jedlinska A, Wasiak M, Kubacka-Traczyk J, Muszalski J 2016 Appl. Phys. B 122 23 [26] Polanik M 2015 Annual Report, Institute of Optoelectronics, Ulm University 3 [27] Leinonen T, Ranta S, Laakso A, Morozov Y, Saarinen M, Pessa M 2007 Opt. Express 15 13451  Google Scholar Google Scholar[28] Hessenius C, Lukowski M, Fallahi M 2012 Appl. Phys. Lett. 101 121110  Google Scholar Google Scholar[29] Lukowski M, Hessenius C, Bedford R, Fallagi M 2015 Opt. Lett. 40 4174  Google Scholar Google Scholar[30] Zhang F, Gaafar M, Möller C, Stolz W, Koch M, Rahimi-Iman A 2016 IEEE Photonic Tech. L. 28 927 [31] Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313  Google Scholar Google Scholar
- 
				
[1] 苏俊宏 2003 红外与激光工程 32 359  Google Scholar Google ScholarSu J 2003 Infrared Laser Eng. 32 359  Google Scholar Google Scholar[2] 李践 2005 中国生物医学工程学报 24 237  Google Scholar Google ScholarLi J 2005 Chin. J. Biomed. Eng. 24 237  Google Scholar Google Scholar[3] Mao Q, Lit J W Y 2002 IEEE Photonic Tech. L. 14 1252  Google Scholar Google Scholar[4] Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072  Google Scholar Google Scholar[5] Kawase K, Mizuno M, Sohma S, Takahashi H, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065  Google Scholar Google Scholar[6] Tittel F K, Richter D, Fried A 2003 Mid-infrared Laser Applications in Spectroscopy (Springer, Berlin, Heidelberg) pp458−529 [7] Beck M, Hofstetter D, Aellen T, Faist J, Oesterle U, Ilegems M, Gini E, Melchior H 2002 Science 295 301  Google Scholar Google Scholar[8] Willer U, Saraji M, Khorsandi A, Geiser P, Schade W 2006 Opt. Laser Eng. 44 699  Google Scholar Google Scholar[9] Waynant R W, Ilev I K, Gannot I 2001 Phil. Trans. R. Soc. A 359 635  Google Scholar Google Scholar[10] Jeon M Y, Kim N, Shin J, Jeong J S, Han S P, Lee C W, Leem Y A, Yee D S, Chun H S, Park K H 2010 Opt. Express 18 12291  Google Scholar Google Scholar[11] Jackson S D 2012 Nat. Photonics 6 423  Google Scholar Google Scholar[12] Lee B G, Belkin M A , Audet R , MacArthur J, Diehl L, Pflügl C, Capasso F, Oakley D C, Chapman D, Napoleone A, Bour D, Corzine S, Höfler G, Faist J 2007 Appl. Phys. Lett. 91 231101  Google Scholar Google Scholar[13] Schiessl U P, Rohr J 1999 Infrared Phys. Tech. 40 325  Google Scholar Google Scholar[14] Budni P A, Pomeranz L A, Lemons M L, Miller C A, Mosto J R, Chicklis E P 2000 J. Opt. Soc. Am 17 723  Google Scholar Google Scholar[15] Hastie J E, Calvez S, Dawson M D, Leinonen T, Laakso A, Lyytikäinen J, Pessa M 2005 Opt. Express 13 77  Google Scholar Google Scholar[16] Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, MurrayJ T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764  Google Scholar Google Scholar[17] Fallahi M, Fan L, Kaneda Y, Hessenius C, Hader J, Li H, Moloney J V, Kunert B, Stolz W, Koch S W, Murray J, Bedford R 2008 IEEE Photonic Tech. L. 20 1700  Google Scholar Google Scholar[18] Maclean A J, Kemp A J, Calvez S, Kim J Y, Kim T, Dawson M D, Burns D 2008 IEEE J. Quantum Elect. 44 216  Google Scholar Google Scholar[19] Fallahi M, Hessenius C, Kaneda Y, Hader J, Moloney J V, Kunert B, Stolz W, Koch S W 2009 Nonlinear Optics: Materials, Fundamentals and Applications Honolulu, Hawaii, July 12−17, 2009 pNThC1 [20] De Groot P J, McGarvey J A 1994 US Patent 5 371 [21] Keller U, Tropper A C 2006 Phys. Rep. 429 67  Google Scholar Google Scholar[22] Zhu R, Wang S, Qiu X, Chen X, Jiang M, Guo-Yu H, Zhang P, Song Y 2018 J. Lumin. 204 663  Google Scholar Google Scholar[23] Abram R H, Gardner K S, Riis E, Ferguson A I 2004 Opt. Express 12 5434  Google Scholar Google Scholar[24] Alfieri C G, Waldburger D, Golling M, Keller U 2018 IEEE Photonic Tech. L. 30 525  Google Scholar Google Scholar[25] Jasik A, Sokół A K, Broda A, Sankowska I, Wójcik-Jedlinska A, Wasiak M, Kubacka-Traczyk J, Muszalski J 2016 Appl. Phys. B 122 23 [26] Polanik M 2015 Annual Report, Institute of Optoelectronics, Ulm University 3 [27] Leinonen T, Ranta S, Laakso A, Morozov Y, Saarinen M, Pessa M 2007 Opt. Express 15 13451  Google Scholar Google Scholar[28] Hessenius C, Lukowski M, Fallahi M 2012 Appl. Phys. Lett. 101 121110  Google Scholar Google Scholar[29] Lukowski M, Hessenius C, Bedford R, Fallagi M 2015 Opt. Lett. 40 4174  Google Scholar Google Scholar[30] Zhang F, Gaafar M, Möller C, Stolz W, Koch M, Rahimi-Iman A 2016 IEEE Photonic Tech. L. 28 927 [31] Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313  Google Scholar Google Scholar
计量
- 文章访问数: 12050
- PDF下载量: 114
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							