搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气体氛围下硅量子点的结构及其发光机理

黄伟其 吕泉 王晓允 张荣涛 于示强

引用本文:
Citation:

不同气体氛围下硅量子点的结构及其发光机理

黄伟其, 吕泉, 王晓允, 张荣涛, 于示强

The structure of silicon quantum dots and key factors for emission in different environment

Huang Wei-Qi, Lü Quan, Wang Xiao-Yun, Zhang Rong-Tao, Yu Shi-Qiang
PDF
导出引用
  • 纳秒脉冲激光在氮气、氧气和空气等不同氛围中加工出的硅量子点都有光致荧光(PL)的发光增强效应,并且在700 nm波长附近观察到了受激辐射.在不同氛围下生成的样品有几乎相同的PL光谱分布,其原因是不同氛围下加工出的样品带隙中有相同的电子态分布.计算结果显示:当硅量子点表面被氮或氧钝化后,在带隙中能够形成几乎相同的局域电子态,这种局域电子态可以俘获来自导带的电子,从而形成亚稳态,这是PL发光增强乃至产生受激辐射的关键因素.
    Silicon quantum dots fabricated by nanosecond pulse laser in nitrogen, oxygen or air environment have enhancement in photoluminescence emission. The stimulated emission was observed at about 700 nm. It is difficult to recognize the difference between the photoluminescence peaks from samples in different environments, which is because of the same structure of the electron states in the band gap for different samples. The calculation results show that the same structure of the localized states forms in the band gap when silicon dangling bonds on surface of quantum dots are passivated by nitrogen or oxygen. It is the localized states that could catch the electrons from the conduction band to form metastable states, which is the key factor to enhance photoluminescence emission.
    • 基金项目: 国家自然科学基金(10764002,60966002)资助课题.
    [1]

    Ashoori R C 1996 Nature 379 413

    [2]

    Alivisatos A P 1996 Science 271 933

    [3]

    Stephanie M R, Matti M 2002 Rev. Mod. Phys. 74 1283

    [4]

    Pavesi L, Negro L D, Mazzoleni C, Franzo G, Priolo F 2000 Nature 408 440

    [5]

    Serpengüzel A, Kurt A, Inan I, Cary J E, Mazur E 2008 J. Nanophotonics 2 021770

    [6]

    Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R, Qin C J 2008 Appl. Phys. Lett. 92 221910

    [7]

    Wolkin M V, Jorne J, Fauchet P M 1999 Phys. Rev. Lett. 82 197

    [8]

    Qin G G, Li Y J 2003 Phys. Rev. B 68 085309

    [9]

    Huang W Q, Liu S R, Xu L 2007 J. Appl. Phys. 102 053517

    [10]

    Huang W Q, Wang X Y, Zhang R T, Yu S Q, Qin C J 2009 Acta Phys. Sin. 58 7 (in CHinese) [黄伟其、王晓允、张荣涛、于示强、秦朝建 2009 物理学报 58 7]

    [11]

    Huang W Q, Wang H X, Jin F, Qin C J 2008 Chin. Phys. B 17 10

  • [1]

    Ashoori R C 1996 Nature 379 413

    [2]

    Alivisatos A P 1996 Science 271 933

    [3]

    Stephanie M R, Matti M 2002 Rev. Mod. Phys. 74 1283

    [4]

    Pavesi L, Negro L D, Mazzoleni C, Franzo G, Priolo F 2000 Nature 408 440

    [5]

    Serpengüzel A, Kurt A, Inan I, Cary J E, Mazur E 2008 J. Nanophotonics 2 021770

    [6]

    Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R, Qin C J 2008 Appl. Phys. Lett. 92 221910

    [7]

    Wolkin M V, Jorne J, Fauchet P M 1999 Phys. Rev. Lett. 82 197

    [8]

    Qin G G, Li Y J 2003 Phys. Rev. B 68 085309

    [9]

    Huang W Q, Liu S R, Xu L 2007 J. Appl. Phys. 102 053517

    [10]

    Huang W Q, Wang X Y, Zhang R T, Yu S Q, Qin C J 2009 Acta Phys. Sin. 58 7 (in CHinese) [黄伟其、王晓允、张荣涛、于示强、秦朝建 2009 物理学报 58 7]

    [11]

    Huang W Q, Wang H X, Jin F, Qin C J 2008 Chin. Phys. B 17 10

计量
  • 文章访问数:  6860
  • PDF下载量:  896
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-13
  • 修回日期:  2010-03-05
  • 刊出日期:  2011-01-15

/

返回文章
返回