搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体光纤中布里渊散射声波模式特性的分析

侯尚林 薛乐梅 黎锁平 刘延君 徐永钊

光子晶体光纤中布里渊散射声波模式特性的分析

侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊
PDF
导出引用
  • 推导了光子晶体光纤中声波微小位移波动方程; 研究了泵浦波长以及纤芯折射率对声波模式的影响; 应用石英圆柱模型研究了小芯径光子晶体光纤中纤芯直径对布里渊声波模式色散的影响. 结果表明在光子晶体光纤中, 纵向声波和横向声波共同作用产生质点声场, 两者相互耦合将产生混合声波模式; 可以通过改变泵浦波长或光子晶体光纤纤芯折射率来改变参与布里渊散射(BS) 过程的声波模式的传播常数; 随着光子晶体光纤(PCF) 纤芯直径的增大, 声波模式耦合程度得到加强, 相速度呈减小趋势, 且同一传播常数下, 声波模式数呈增多趋势; 随着泵浦波频率的增大, 声波相速度减小.
    • 基金项目: 国家自然科学基金(批准号: 61167005)、 甘肃省自然科学基金项目(批准号: 1010RJZA036)、 兰州理工大学博士启动基金和广东省自然科学基金 (批准号: 10451170003004948) 资助的课题.
    [1]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: Institute of Physics Publishing) p6

    [2]

    Agrawal G P 1995 Nonlinear Fiber Optics (California: Academic Press) p306

    [3]

    Zolla F 2005 Foundations of Photonic Crystal Fibers (London: Imperial College Press) p13

    [4]

    Yan M 2005 arXiv: 0508139v2 [physics.optics]

    [5]

    Cui Y L, Hou L T 2010 Acta Phys. Sin. 59 2571 (in Chinese) [崔艳玲, 侯蓝田 2010 物理学报 59 2571]

    [6]

    Cheng T L, Chai L, Li Y F, Hu M L, Wang Q Y 2011 Acta Phys. Sin. 60 024216 (in Chinese) [程同蕾, 柴路, 栗岩峰, 胡明列, 王清月 2011 物理学报 60 024216]

    [7]

    Chen W, Li S Y, Lei D Y, Luo W Y, Wang D X, Huang Wen J 2009 OFCIO

    [8]

    Russell P S J, Marin E, Diez A 2003 Opt. Express 11 2555

    [9]

    Enomori I, Saitoh K, Koshiba M, Matsui T 2005 Electron. Comm. Jpn. 88 27

    [10]

    Dainese P, Russell P S J, Joly N, Knight J C, Wiederhecker G S, Fragnito H L, Laude V, Khelif A 2006 Nat. Phys. 2 388

    [11]

    Huang Y, Zhang W, Wang Y, Huang Y D, Peng J D 2009 Acta Phys. Sin. 58 1731(in Chinese) [黄俨, 张巍, 王胤, 黄翊东, 彭江得 2009 物理学报 58 1731]

    [12]

    Hou S L, Zhang S J, Li S P, Liu Y J, Xu Y Z 2011 Acta Opt. Sin. 31 0506004 (in Chinese) [侯尚林, 张书军, 黎锁平, 刘延君, 徐永钊 2011 光学学报 31 0506004]

    [13]

    Hou S L, Li H B, Li S P, Liu Y J, Xu Y Z 2011 Acta Opt. Sin. 31 0606008 (in Chinese) [侯尚林, 李红兵, 黎锁平, 刘延君, 徐永钊 2011 光学学报 31 0606008]

    [14]

    McElhenny J E, Pattnaik R K, Toulouse J, Saitoh K, Koshiba M 2008 J. Opt. Soc. Am. B 25 582

    [15]

    Dainese P, Russell P S J, Wiederhecker G S, Joly N, Fragnito H L, Laude V, Khelif A 2006 Opt. Express 14 4141

    [16]

    Thurston R N 1978 J. Acoust. Soc. Am. 64 1

    [17]

    Kuttruff H 2007 Acoustics (New York: Taylor & Francies Group) p191

    [18]

    Li Y, Liu Y G, Zhao J F, Tai B Y, Yan A D 2010 Front. Optoelectron. China 3 260

  • [1]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: Institute of Physics Publishing) p6

    [2]

    Agrawal G P 1995 Nonlinear Fiber Optics (California: Academic Press) p306

    [3]

    Zolla F 2005 Foundations of Photonic Crystal Fibers (London: Imperial College Press) p13

    [4]

    Yan M 2005 arXiv: 0508139v2 [physics.optics]

    [5]

    Cui Y L, Hou L T 2010 Acta Phys. Sin. 59 2571 (in Chinese) [崔艳玲, 侯蓝田 2010 物理学报 59 2571]

    [6]

    Cheng T L, Chai L, Li Y F, Hu M L, Wang Q Y 2011 Acta Phys. Sin. 60 024216 (in Chinese) [程同蕾, 柴路, 栗岩峰, 胡明列, 王清月 2011 物理学报 60 024216]

    [7]

    Chen W, Li S Y, Lei D Y, Luo W Y, Wang D X, Huang Wen J 2009 OFCIO

    [8]

    Russell P S J, Marin E, Diez A 2003 Opt. Express 11 2555

    [9]

    Enomori I, Saitoh K, Koshiba M, Matsui T 2005 Electron. Comm. Jpn. 88 27

    [10]

    Dainese P, Russell P S J, Joly N, Knight J C, Wiederhecker G S, Fragnito H L, Laude V, Khelif A 2006 Nat. Phys. 2 388

    [11]

    Huang Y, Zhang W, Wang Y, Huang Y D, Peng J D 2009 Acta Phys. Sin. 58 1731(in Chinese) [黄俨, 张巍, 王胤, 黄翊东, 彭江得 2009 物理学报 58 1731]

    [12]

    Hou S L, Zhang S J, Li S P, Liu Y J, Xu Y Z 2011 Acta Opt. Sin. 31 0506004 (in Chinese) [侯尚林, 张书军, 黎锁平, 刘延君, 徐永钊 2011 光学学报 31 0506004]

    [13]

    Hou S L, Li H B, Li S P, Liu Y J, Xu Y Z 2011 Acta Opt. Sin. 31 0606008 (in Chinese) [侯尚林, 李红兵, 黎锁平, 刘延君, 徐永钊 2011 光学学报 31 0606008]

    [14]

    McElhenny J E, Pattnaik R K, Toulouse J, Saitoh K, Koshiba M 2008 J. Opt. Soc. Am. B 25 582

    [15]

    Dainese P, Russell P S J, Wiederhecker G S, Joly N, Fragnito H L, Laude V, Khelif A 2006 Opt. Express 14 4141

    [16]

    Thurston R N 1978 J. Acoust. Soc. Am. 64 1

    [17]

    Kuttruff H 2007 Acoustics (New York: Taylor & Francies Group) p191

    [18]

    Li Y, Liu Y G, Zhao J F, Tai B Y, Yan A D 2010 Front. Optoelectron. China 3 260

  • 引用本文:
    Citation:
计量
  • 文章访问数:  3238
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-26
  • 修回日期:  2011-11-28
  • 刊出日期:  2012-07-05

光子晶体光纤中布里渊散射声波模式特性的分析

  • 1. 兰州理工大学理学院, 兰州 730050;
  • 2. 东莞理工学院 电子工程学院, 东莞 523808
    基金项目: 

    国家自然科学基金(批准号: 61167005)、 甘肃省自然科学基金项目(批准号: 1010RJZA036)、 兰州理工大学博士启动基金和广东省自然科学基金 (批准号: 10451170003004948) 资助的课题.

摘要: 推导了光子晶体光纤中声波微小位移波动方程; 研究了泵浦波长以及纤芯折射率对声波模式的影响; 应用石英圆柱模型研究了小芯径光子晶体光纤中纤芯直径对布里渊声波模式色散的影响. 结果表明在光子晶体光纤中, 纵向声波和横向声波共同作用产生质点声场, 两者相互耦合将产生混合声波模式; 可以通过改变泵浦波长或光子晶体光纤纤芯折射率来改变参与布里渊散射(BS) 过程的声波模式的传播常数; 随着光子晶体光纤(PCF) 纤芯直径的增大, 声波模式耦合程度得到加强, 相速度呈减小趋势, 且同一传播常数下, 声波模式数呈增多趋势; 随着泵浦波频率的增大, 声波相速度减小.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回