搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多分界面下四维蔡氏电路的张弛簇发及其机制研究

张晓芳 陈小可 毕勤胜

多分界面下四维蔡氏电路的张弛簇发及其机制研究

张晓芳, 陈小可, 毕勤胜
PDF
导出引用
  • 在经典蔡氏电路的基础上, 引入反馈元件, 建立了包含多个分界面的四维广义蔡氏电路. 在适当的参数条件下, 状态变量之间会存在量级上的差距, 从而构成了包含两个时间尺度的快慢耦合系统. 分析了快子系统的平衡点及其性质, 进而利用微分包含理论, 探讨了不同的非光滑分界面上的奇异性. 给出了系统在两组参数条件下的不同周期簇发行为, 应用快慢分析法探讨了系统轨迹在经过多个分界面时的特殊簇发现象, 揭示了多吸引子共存时不同的簇发行为的形成机理以及非光滑分岔对簇发行为的影响.
    • 基金项目: 国家自然科学基金(批准号: 10972091, 20976075)和江苏大学高级人才基金(批准号: 10JDG144)资助的课题.
    [1]

    Chiba H 2011 J. Differential Equations 250 112

    [2]

    Both R, Finger W, Chaplain R A 1976 Biol. Cybernet. 23 1

    [3]

    Rinzel J 1985 Ordinary and Partial Differential Equations (Berlin: Springer-Verlag) p304

    [4]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [5]

    Perc M, Marhl M 2003 Chaos, Solitons and Fractals 18 759

    [6]

    Mease K D 2005 Appl. Math. Comput. 164 627

    [7]

    Lashina E A, Chumakova N A, Chumakov G A, Boronin A I 2009 Chem. Eng. J. 154 82

    [8]

    Wang H X, Wang Q Y, Lu Q S 2011 Chaos, Solitons and Fractals 44 667

    [9]

    Sundarapandian V, Sundarapandian I 2012 Math. Comput. Modelling 55 1904

    [10]

    Gao T G, Chen G R, Chen Z Q, Cang S J 2007 Phys. Lett. A 361 78

    [11]

    Leine R I 2006 Physica D 223 121

    [12]

    Ren H P, Li W C, Liu D 2010 Chin. Phys. B 19 030511

    [13]

    Gámez-Guzmán L, Cruz-Hernández C, López-Gutiérrez R M, García-Guerrero E E 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2765

    [14]

    Mkaouar H, Boubaker O 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1292

    [15]

    Koliopanos C L, Kyprianidis I M, Stouboulos I N, Anagnostopoulos A N, Magafsa L 2003 Chaos, Solitons and Fractals 16 173

    [16]

    Yu S M, Yu Z D 2008 Acta Phys. Sin. 57 6859 (in Chinese) [禹思敏, 禹之鼎 2008 物理学报 57 6859]

  • [1]

    Chiba H 2011 J. Differential Equations 250 112

    [2]

    Both R, Finger W, Chaplain R A 1976 Biol. Cybernet. 23 1

    [3]

    Rinzel J 1985 Ordinary and Partial Differential Equations (Berlin: Springer-Verlag) p304

    [4]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [5]

    Perc M, Marhl M 2003 Chaos, Solitons and Fractals 18 759

    [6]

    Mease K D 2005 Appl. Math. Comput. 164 627

    [7]

    Lashina E A, Chumakova N A, Chumakov G A, Boronin A I 2009 Chem. Eng. J. 154 82

    [8]

    Wang H X, Wang Q Y, Lu Q S 2011 Chaos, Solitons and Fractals 44 667

    [9]

    Sundarapandian V, Sundarapandian I 2012 Math. Comput. Modelling 55 1904

    [10]

    Gao T G, Chen G R, Chen Z Q, Cang S J 2007 Phys. Lett. A 361 78

    [11]

    Leine R I 2006 Physica D 223 121

    [12]

    Ren H P, Li W C, Liu D 2010 Chin. Phys. B 19 030511

    [13]

    Gámez-Guzmán L, Cruz-Hernández C, López-Gutiérrez R M, García-Guerrero E E 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2765

    [14]

    Mkaouar H, Boubaker O 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1292

    [15]

    Koliopanos C L, Kyprianidis I M, Stouboulos I N, Anagnostopoulos A N, Magafsa L 2003 Chaos, Solitons and Fractals 16 173

    [16]

    Yu S M, Yu Z D 2008 Acta Phys. Sin. 57 6859 (in Chinese) [禹思敏, 禹之鼎 2008 物理学报 57 6859]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2236
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-31
  • 修回日期:  2012-07-26
  • 刊出日期:  2013-01-05

多分界面下四维蔡氏电路的张弛簇发及其机制研究

  • 1. 江苏大学土木工程与力学学院, 镇江 212013
    基金项目: 

    国家自然科学基金(批准号: 10972091, 20976075)和江苏大学高级人才基金(批准号: 10JDG144)资助的课题.

摘要: 在经典蔡氏电路的基础上, 引入反馈元件, 建立了包含多个分界面的四维广义蔡氏电路. 在适当的参数条件下, 状态变量之间会存在量级上的差距, 从而构成了包含两个时间尺度的快慢耦合系统. 分析了快子系统的平衡点及其性质, 进而利用微分包含理论, 探讨了不同的非光滑分界面上的奇异性. 给出了系统在两组参数条件下的不同周期簇发行为, 应用快慢分析法探讨了系统轨迹在经过多个分界面时的特殊簇发现象, 揭示了多吸引子共存时不同的簇发行为的形成机理以及非光滑分岔对簇发行为的影响.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回