搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌伪随机序列的谱熵复杂性分析

孙克辉 贺少波 何毅 尹林子

混沌伪随机序列的谱熵复杂性分析

孙克辉, 贺少波, 何毅, 尹林子
PDF
导出引用
导出核心图
  • 为了准确分析混沌伪随机序列的结构复杂性, 采用谱熵算法对Logistic映射、Gaussian映射和TD-ERCS系统产生的混沌伪随机序列复杂度进行了分析.谱熵算法具有参数少、 对序列长度 N (惟一参数)和伪随机进制数 K鲁棒性好的特点.采用窗口滑动法分析了混沌伪随机序列的复杂度演变特性, 计算了离散混沌系统不同初值和不同系统参数条件下的复杂度.研究表明, 谱熵算法能有效地分析混沌伪随机序列的结构复杂度;在这三个混沌系统中, TD-ERCS系统为广域高复杂度混沌系统, 复杂度性能最好;不同窗口和不同初值条件下的混沌系统复杂度在较小范围内波动.为混沌序列在信息安全中的应用提供了理论和实验依据.
    • 基金项目: 国家自然科学基金(批准号: 61161006, 61073187)资助的课题.
    [1]

    Zhou Q, Hu Y, Liao X F 2009 Acta Phys. Sin. 58 4477 (in Chinese) [周庆, 胡月, 廖晓峰 2009 物理学报 58 4477]

    [2]

    Li J B, Zeng Y C, Chen S B, Chen J S 2011 Acta Phys. Sin. 60 060508 (in Chinese) [李家标, 曾以成, 陈仕必, 陈家胜 2011 物理学报 60 060508]

    [3]

    Li Z, Cai J P, Chang Y L 2009 IEEE Trans. Commun. 57 812

    [4]

    Li Z, Cai J P, Lu X F, Si J B 2009 Communications, 2009. ICC 09. IEEE International Conference on (6) p1-5

    [5]

    Kolmogorov A N 1965 Prob. Inform. Trans. 35 1546

    [6]

    Shannon C E 1948 Bell System Technical Journal 27 397

    [7]

    Liu N S 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 761

    [8]

    Lempel A, Ziv J 1976 IEEE Trans. IT-22 75

    [9]

    Sun K H, Tan G Q, Sheng L Y 2008 Acta Phys. Sin. 57 3359 (in Chinese) [孙克辉, 谈国强, 盛利元 2008 物理学报 57 3359]

    [10]

    Chen X J, Li Z, Bai B M 2011 J. Electron. Inform. Technol. 33 1198 (in Chinese) [陈小军, 李赞, 白宝明 2011 电子与信息学报 33 1198]

    [11]

    Pincus S M 1995 Chaos 5 110

    [12]

    Chen W T, Wang Z, Xie H, Yu W X 2007 IEEE Trans. Neural Sys. Rehabilit. Eng. 15 266

    [13]

    Sun K H, He S B, Sheng L Y 2011 Acta Phys. Sin. 60 020505 (in Chinese) [孙克辉, 贺少波, 盛利元 2011物理学报 60 020505]

    [14]

    Luo S J, Qiu S S, Chen X 2010 J. South China Univ. Technol. 38 18 (in Chinese) [罗松江, 丘水生, 陈旭 2010华南理工大学学报 38 18]

    [15]

    Xiao F H, Yan G R, Han Y H 2004 Acta Phys. Sin. 53 2877 (in Chinese) [肖方红, 阎桂荣, 韩宇航 2004物理学报 53 2877]

    [16]

    Larrondo H A, González C M, Martin M T 2005 Physica A 356 133

    [17]

    Rajeev K A, Subba R J, Ramakrishna R 2002 Chaos, Solitons and Fractals 14 633

    [18]

    Abdulnasir Y, Mehmet A, Mustafa P 2009 Exp. Syst. Appl. 36 7390

    [19]

    Phillip P A, Chiu F L, Nick S J 2009 Phys. Rev. E 79 011915

    [20]

    Malihe S, Serajeddin K, Reza B 2009 Artif. Intell. Med. 47 263

    [21]

    Vinod P 2006 Electron. J. Theor. Phys. 3 29

    [22]

    Sheng L Y, Wen J, Cao L L, Xiao Y Y 2007 Acta Phys. Sin. 56 78 (in Chinese) [盛利元, 闻姜, 曹莉凌, 肖燕予 2007 物理学报 56 78]

  • [1]

    Zhou Q, Hu Y, Liao X F 2009 Acta Phys. Sin. 58 4477 (in Chinese) [周庆, 胡月, 廖晓峰 2009 物理学报 58 4477]

    [2]

    Li J B, Zeng Y C, Chen S B, Chen J S 2011 Acta Phys. Sin. 60 060508 (in Chinese) [李家标, 曾以成, 陈仕必, 陈家胜 2011 物理学报 60 060508]

    [3]

    Li Z, Cai J P, Chang Y L 2009 IEEE Trans. Commun. 57 812

    [4]

    Li Z, Cai J P, Lu X F, Si J B 2009 Communications, 2009. ICC 09. IEEE International Conference on (6) p1-5

    [5]

    Kolmogorov A N 1965 Prob. Inform. Trans. 35 1546

    [6]

    Shannon C E 1948 Bell System Technical Journal 27 397

    [7]

    Liu N S 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 761

    [8]

    Lempel A, Ziv J 1976 IEEE Trans. IT-22 75

    [9]

    Sun K H, Tan G Q, Sheng L Y 2008 Acta Phys. Sin. 57 3359 (in Chinese) [孙克辉, 谈国强, 盛利元 2008 物理学报 57 3359]

    [10]

    Chen X J, Li Z, Bai B M 2011 J. Electron. Inform. Technol. 33 1198 (in Chinese) [陈小军, 李赞, 白宝明 2011 电子与信息学报 33 1198]

    [11]

    Pincus S M 1995 Chaos 5 110

    [12]

    Chen W T, Wang Z, Xie H, Yu W X 2007 IEEE Trans. Neural Sys. Rehabilit. Eng. 15 266

    [13]

    Sun K H, He S B, Sheng L Y 2011 Acta Phys. Sin. 60 020505 (in Chinese) [孙克辉, 贺少波, 盛利元 2011物理学报 60 020505]

    [14]

    Luo S J, Qiu S S, Chen X 2010 J. South China Univ. Technol. 38 18 (in Chinese) [罗松江, 丘水生, 陈旭 2010华南理工大学学报 38 18]

    [15]

    Xiao F H, Yan G R, Han Y H 2004 Acta Phys. Sin. 53 2877 (in Chinese) [肖方红, 阎桂荣, 韩宇航 2004物理学报 53 2877]

    [16]

    Larrondo H A, González C M, Martin M T 2005 Physica A 356 133

    [17]

    Rajeev K A, Subba R J, Ramakrishna R 2002 Chaos, Solitons and Fractals 14 633

    [18]

    Abdulnasir Y, Mehmet A, Mustafa P 2009 Exp. Syst. Appl. 36 7390

    [19]

    Phillip P A, Chiu F L, Nick S J 2009 Phys. Rev. E 79 011915

    [20]

    Malihe S, Serajeddin K, Reza B 2009 Artif. Intell. Med. 47 263

    [21]

    Vinod P 2006 Electron. J. Theor. Phys. 3 29

    [22]

    Sheng L Y, Wen J, Cao L L, Xiao Y Y 2007 Acta Phys. Sin. 56 78 (in Chinese) [盛利元, 闻姜, 曹莉凌, 肖燕予 2007 物理学报 56 78]

  • [1] 董文杰, 封国林, 侯 威. 基于复杂度分析logistic映射和Lorenz模型的研究. 物理学报, 2005, 54(8): 3940-3946. doi: 10.7498/aps.54.3940
    [2] 姜海波, 李涛, 曾小亮, 张丽萍. 周期脉冲作用下Logistic映射的复杂动力学行为及其分岔分析. 物理学报, 2013, 62(12): 120508. doi: 10.7498/aps.62.120508
    [3] 邓海涛, 邓家先, 邓小梅. 基于EZW的图像压缩和树形加密同步算法. 物理学报, 2013, 62(11): 110701. doi: 10.7498/aps.62.110701
    [4] 杨汝, 赵寿柏, 劳裕锦, 张波. 基于符号时间序列方法的开关变换器离散映射算法复杂度分析. 物理学报, 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [5] 王兴元, 王明军. 二维Logistic映射的混沌控制. 物理学报, 2008, 57(2): 731-736. doi: 10.7498/aps.57.731
    [6] 孙克辉, 贺少波, 尹林子, 阿地力·多力坤. 模糊熵算法在混沌序列复杂度分析中的应用. 物理学报, 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [7] 何 亮, 杜 磊, 陈建平, 庄奕琪, 李伟华. 金属互连电迁移噪声的多尺度熵复杂度分析. 物理学报, 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [8] 蔡觉平, 陈小军, 李赞, 白宝明. 一种确定混沌伪随机序列复杂度的模糊关系熵测度. 物理学报, 2011, 60(6): 064215. doi: 10.7498/aps.60.064215
    [9] 孙克辉, 贺少波, 盛利元. 基于强度统计算法的混沌序列复杂度分析. 物理学报, 2011, 60(2): 020505. doi: 10.7498/aps.60.020505
    [10] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1089
  • PDF下载量:  1046
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-27
  • 修回日期:  2012-07-17
  • 刊出日期:  2013-01-05

混沌伪随机序列的谱熵复杂性分析

  • 1. 中南大学 物理与电子学院, 长沙 410083;
  • 2. 新疆大学 物理科学与技术学院, 乌鲁木齐 830046
    基金项目: 

    国家自然科学基金(批准号: 61161006, 61073187)资助的课题.

摘要: 为了准确分析混沌伪随机序列的结构复杂性, 采用谱熵算法对Logistic映射、Gaussian映射和TD-ERCS系统产生的混沌伪随机序列复杂度进行了分析.谱熵算法具有参数少、 对序列长度 N (惟一参数)和伪随机进制数 K鲁棒性好的特点.采用窗口滑动法分析了混沌伪随机序列的复杂度演变特性, 计算了离散混沌系统不同初值和不同系统参数条件下的复杂度.研究表明, 谱熵算法能有效地分析混沌伪随机序列的结构复杂度;在这三个混沌系统中, TD-ERCS系统为广域高复杂度混沌系统, 复杂度性能最好;不同窗口和不同初值条件下的混沌系统复杂度在较小范围内波动.为混沌序列在信息安全中的应用提供了理论和实验依据.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回