-
由于CaCu3Ti4O12巨介电常数陶瓷的低频区直流电导较大, 本文采用模量 M"-f频谱表征与分析了低频和高频的两个松弛极化过程. 研究认为, 这两个特征峰属于晶界区Schottky 势垒耗尽层边缘深陷阱的电子松弛过程, 其中高频松弛峰起源于晶粒本征缺陷的电子松弛过程, 而低频松弛峰则为与氧空位有关的松弛极化过程. 对于CaCu3Ti4O12这类低频下具有高直流电导的陶瓷材料, 采用模量频谱能更有效地分析研究其损耗极化机理.
-
关键词:
- CaCu3Ti4O12陶瓷 /
- 模量 /
- 松弛过程 /
- 电导
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 Solid State Chem. 151 323
[2] Ramirez A, Subramanian M, Gardel M, Blumberg G, Li D, Vogt D, Shapiro S M 2000 Solid State Comuun. 115 217
[3] Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[4] Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[5] Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912
[6] Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
[7] Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902
[8] Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201
[9] Li J, Li B, Zhai D, Li S T, Alim M A 2006 J. Phys. D:Appl. Phys. 39 4969
[10] Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302 (in Chinese) [成鹏飞, 李盛涛, 李建英 2012 物理学报 61 187302]
[11] Cowley A M 1966 J. Appl. Phys. 37 3024
[12] Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2003 Phys. Rev. B 70 144106
[13] Zhang L, Tang Z J 2003 Phys. Rev. B 70 174306
[14] Jia R, Gu F, Wu Z H, Zhao X T, Li J Y 2012 Acta Phys. Sin. 61 207701 (in Chinese) [贾然, 顾访, 吴珍华, 赵学童, 李建英 2012 物理学报 61 207701]
[15] Yang Y 2009 Ph.D. Dissertation (Xi'an:Xi'an Jiaotong University) (in Chinese) [杨雁 2009 博士学位论文(西安:西安交通大学)]
[16] Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D:Appl. Phys. 38 1824
[17] Yu A Y C, Snow E H 1968 J. Appl. Phys. 39 3008
-
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 Solid State Chem. 151 323
[2] Ramirez A, Subramanian M, Gardel M, Blumberg G, Li D, Vogt D, Shapiro S M 2000 Solid State Comuun. 115 217
[3] Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[4] Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[5] Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912
[6] Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
[7] Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902
[8] Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201
[9] Li J, Li B, Zhai D, Li S T, Alim M A 2006 J. Phys. D:Appl. Phys. 39 4969
[10] Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302 (in Chinese) [成鹏飞, 李盛涛, 李建英 2012 物理学报 61 187302]
[11] Cowley A M 1966 J. Appl. Phys. 37 3024
[12] Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2003 Phys. Rev. B 70 144106
[13] Zhang L, Tang Z J 2003 Phys. Rev. B 70 174306
[14] Jia R, Gu F, Wu Z H, Zhao X T, Li J Y 2012 Acta Phys. Sin. 61 207701 (in Chinese) [贾然, 顾访, 吴珍华, 赵学童, 李建英 2012 物理学报 61 207701]
[15] Yang Y 2009 Ph.D. Dissertation (Xi'an:Xi'an Jiaotong University) (in Chinese) [杨雁 2009 博士学位论文(西安:西安交通大学)]
[16] Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D:Appl. Phys. 38 1824
[17] Yu A Y C, Snow E H 1968 J. Appl. Phys. 39 3008
引用本文: |
Citation: |
计量
- 文章访问数: 2175
- PDF下载量: 1202
- 被引次数: 0