搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力条件下不同截面形状管中毛细流动的实验研究

徐升华 周宏伟 王彩霞 王林伟 孙祉伟

微重力条件下不同截面形状管中毛细流动的实验研究

徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟
PDF
导出引用
导出核心图
  • 利用落塔设施创造的短时间微重力条件, 研究了不同尺寸的正方形和三角形截面的毛细管中的流体在微重力条件下的流动行为, 并与圆形毛细管中的毛细流动进行了对比, 总结出了毛细管尺寸和截面形状对界面张力主导的毛细流动行为的影响规律. 结果显示, 对于同样形状的毛细管, 其尺寸对于毛细流动的影响规律基本相同; 而对于不同的截面形状, 方形管和三角形管都与截面积小得多的圆形管有一定的类似性. 相关结果对于深入理解不同条件下的界面张力主导的毛细流动特性, 以及在空间微重力条件下通过改变毛细管的形状来实现流速和流量的独 立控制等方面都具有明显的现实意义.
    • 基金项目: 国家自然科学基金(批准号: 11032011, 11172302)资助的课题.
    [1]

    Young T 1805 Phil. Trans. Roy. soc. Lond. 95 65

    [2]

    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E 2009 Rev. Mod. Phys. 81 739

    [3]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [4]

    Chibowski E 2007 Adv. Colloid Interface Sci. 133 51

    [5]

    u S H, Wang L W, Sun Z W, Wang C X 2012 Acta Phys. Sin. 61 166801 (in Chinese) [徐升华, 王林伟, 孙祉伟, 王彩霞 2012 物理学报 61 166801]

    [6]

    Sikalo S, Wihelm H D, Roisman I V, Jakirlic S, Tropea C 2005 Phys. Fluids 17 062103

    [7]

    Reznik S N, Yarin A L 2002 Phys. Fluids 14 118

    [8]

    Bazhlekov I B, Shopov P J 1997 J. Fluid Mech. 352 113

    [9]

    Xu S H, Wang C X, Sun Z W, Hu W R 2011 Int. J. Heat Mass Trans. 54 2222

    [10]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Trans. 53 1801

    [11]

    Brady V, Concus P, Finn R 2003 Phys. Fluids 15 1545

    [12]

    Tsori Y 2006 Langmuir 22 8860

    [13]

    Erickson D, Li D, Park C B 2002 J. Colloid Interface Sci. 250 422

    [14]

    Dreyer M E, Delgado A, Rath H J 1994 J. Colloid Interface Sci. 163 158

    [15]

    Stange M, Dreyer M E, Rath H J 2003 Phys. Fluids 15 2587

    [16]

    Wang C X, Xu S H, Sun Z W, Hu W R 2009 AIAA J. 47 2642

    [17]

    Concus P, Finn R 1974 Acta Math. 132 177

    [18]

    Concus P, Finn R 1974 Acta Math. 132 207

    [19]

    Finn R 1984 J. Reine Angew. Math. 353 196

    [20]

    Chen Y, Collicott S H 2004 AIAA J. 42 305

    [21]

    Chen Y, Collicott S H 2005 AIAA J. 43 2395

    [22]

    Chen Y, Collicott S H 2006 AIAA J. 44 859

    [23]

    Ichikawa N, Satoda Y 1994 J. Colloid Interface Sci. 162 350

    [24]

    Wolf F G, dos Santos L O E, Philippi P C 2010 J.Colloid Interface Sci. 344 171

    [25]

    Zhang X Q, Yuan L G, Wu W D, Tian L Q, Yao K Z 2005 Scien. China E 35 523 (in Chinese) [张孝谦, 袁龙根, 吴文东, 田兰桥, 姚康庄 2005 中国科学E辑 35 523]

    [26]

    Weislogel M M, Ross H D 1990 NASA-TM-103641 (NASA report)

  • [1]

    Young T 1805 Phil. Trans. Roy. soc. Lond. 95 65

    [2]

    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E 2009 Rev. Mod. Phys. 81 739

    [3]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [4]

    Chibowski E 2007 Adv. Colloid Interface Sci. 133 51

    [5]

    u S H, Wang L W, Sun Z W, Wang C X 2012 Acta Phys. Sin. 61 166801 (in Chinese) [徐升华, 王林伟, 孙祉伟, 王彩霞 2012 物理学报 61 166801]

    [6]

    Sikalo S, Wihelm H D, Roisman I V, Jakirlic S, Tropea C 2005 Phys. Fluids 17 062103

    [7]

    Reznik S N, Yarin A L 2002 Phys. Fluids 14 118

    [8]

    Bazhlekov I B, Shopov P J 1997 J. Fluid Mech. 352 113

    [9]

    Xu S H, Wang C X, Sun Z W, Hu W R 2011 Int. J. Heat Mass Trans. 54 2222

    [10]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Trans. 53 1801

    [11]

    Brady V, Concus P, Finn R 2003 Phys. Fluids 15 1545

    [12]

    Tsori Y 2006 Langmuir 22 8860

    [13]

    Erickson D, Li D, Park C B 2002 J. Colloid Interface Sci. 250 422

    [14]

    Dreyer M E, Delgado A, Rath H J 1994 J. Colloid Interface Sci. 163 158

    [15]

    Stange M, Dreyer M E, Rath H J 2003 Phys. Fluids 15 2587

    [16]

    Wang C X, Xu S H, Sun Z W, Hu W R 2009 AIAA J. 47 2642

    [17]

    Concus P, Finn R 1974 Acta Math. 132 177

    [18]

    Concus P, Finn R 1974 Acta Math. 132 207

    [19]

    Finn R 1984 J. Reine Angew. Math. 353 196

    [20]

    Chen Y, Collicott S H 2004 AIAA J. 42 305

    [21]

    Chen Y, Collicott S H 2005 AIAA J. 43 2395

    [22]

    Chen Y, Collicott S H 2006 AIAA J. 44 859

    [23]

    Ichikawa N, Satoda Y 1994 J. Colloid Interface Sci. 162 350

    [24]

    Wolf F G, dos Santos L O E, Philippi P C 2010 J.Colloid Interface Sci. 344 171

    [25]

    Zhang X Q, Yuan L G, Wu W D, Tian L Q, Yao K Z 2005 Scien. China E 35 523 (in Chinese) [张孝谦, 袁龙根, 吴文东, 田兰桥, 姚康庄 2005 中国科学E辑 35 523]

    [26]

    Weislogel M M, Ross H D 1990 NASA-TM-103641 (NASA report)

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1824
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-21
  • 修回日期:  2013-01-16
  • 刊出日期:  2013-07-05

微重力条件下不同截面形状管中毛细流动的实验研究

  • 1. 中国科学院微重力重点实验室, 中国科学院力学研究所, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 11032011, 11172302)资助的课题.

摘要: 利用落塔设施创造的短时间微重力条件, 研究了不同尺寸的正方形和三角形截面的毛细管中的流体在微重力条件下的流动行为, 并与圆形毛细管中的毛细流动进行了对比, 总结出了毛细管尺寸和截面形状对界面张力主导的毛细流动行为的影响规律. 结果显示, 对于同样形状的毛细管, 其尺寸对于毛细流动的影响规律基本相同; 而对于不同的截面形状, 方形管和三角形管都与截面积小得多的圆形管有一定的类似性. 相关结果对于深入理解不同条件下的界面张力主导的毛细流动特性, 以及在空间微重力条件下通过改变毛细管的形状来实现流速和流量的独 立控制等方面都具有明显的现实意义.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回