搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳硅二炔结构及性质分子动力学模拟研究

颜笑 辛子华 张娇娇

碳硅二炔结构及性质分子动力学模拟研究

颜笑, 辛子华, 张娇娇
PDF
导出引用
  • 采用基于量子力学的半经验哈密顿量的计算方法,即SCED-LCAO方法,模拟研究了碳硅二炔的稳定性结构、成键特点、电子结构等性质. 得出其最稳定的结构是单层平面结构,晶格常数为12.251 Å. 它通过 含有两个Si-C三键的链连接六元环构成. 这种平面结构在很大高温范围内都可以保持其稳定特性,直到1520 K时,该基本结构才被破坏,且结构中出现四元环. 体系温度低于1520 K时,均可通过降温,恢复其零温时的结构. 研究还发现这种共轭结构中Si,C 原子间存在稳定的sp杂化形式,对分布函数得出其键长为1.58 Å左右. 高温时sp杂化逐渐转变成其他杂化形式. 计算结果表明,在零温下,该电中性系统中存在离域π键,使得系统中的Si-C键长呈现平均化趋势. 研究表明,碳硅二炔的能隙为1.416 eV,LUMO,HOMO能级分别是0.386 eV和–1.03 eV表明了其n型半导体特性.
    • 基金项目: 国家自然科学基金(批准号:61176118)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Hirsch A 2010 Nat. Mater. 9 868

    [5]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [6]

    Li G X, Li Y L, Liu H B 2010 Chem. Commun. 46 3256

    [7]

    Du H L, Deng Z B, L Z Y 2011 Synth. Met. 161 2055

    [8]

    Li G X, Li Y L, Qian X M 2011 J. Phys. Chem. C 115 2611

    [9]

    Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS Nano 5 2593

    [10]

    Malko D, Neiss C 2012 Phys. Rev. Lett. 108 086804

    [11]

    Jiao Y, Du A J, Hankel M, Rudolph V 2011 Chem. Commun. 47 11843

    [12]

    Zheng Q, Luo G, Liu Q H 2012 Nanoscale 4 3990

    [13]

    Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102

    [14]

    Enyashin A N, Ivanovskii A N 2013 Superlattices and Microstructures 55 75

    [15]

    Ongun Özçelik V, Ciraci S 2013 arXiv:1301.2593v2 [Cond-mat.mtrl-sci]

    [16]

    Pei Y, Wu H B 2013 Chin. Phys. B 22 057303

    [17]

    Sun X H, Li C P, Wong W K 2002 J. Am. Chem. Soc. 124 14464

    [18]

    Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 物理学报 62 107101]

    [19]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [20]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李兵, 杨传路, 齐凯天, 张岩, 盛勇 2009 物理学报 58 3104]

    [21]

    Tang C, Wei X L, Tan X, Peng X Y, Sun L Z, Zhong J X 2012 Chin. Phys. B 21 066803

    [22]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [23]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [24]

    Hellmann H 1937 Einführung in die Quantenchemie (Leipzig and Vienna: Franz Deuticke) pp 285–286

    [25]

    Feynman R P 1939 Phys. Rev. 56 340

    [26]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [27]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [28]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Hirsch A 2010 Nat. Mater. 9 868

    [5]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [6]

    Li G X, Li Y L, Liu H B 2010 Chem. Commun. 46 3256

    [7]

    Du H L, Deng Z B, L Z Y 2011 Synth. Met. 161 2055

    [8]

    Li G X, Li Y L, Qian X M 2011 J. Phys. Chem. C 115 2611

    [9]

    Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS Nano 5 2593

    [10]

    Malko D, Neiss C 2012 Phys. Rev. Lett. 108 086804

    [11]

    Jiao Y, Du A J, Hankel M, Rudolph V 2011 Chem. Commun. 47 11843

    [12]

    Zheng Q, Luo G, Liu Q H 2012 Nanoscale 4 3990

    [13]

    Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102

    [14]

    Enyashin A N, Ivanovskii A N 2013 Superlattices and Microstructures 55 75

    [15]

    Ongun Özçelik V, Ciraci S 2013 arXiv:1301.2593v2 [Cond-mat.mtrl-sci]

    [16]

    Pei Y, Wu H B 2013 Chin. Phys. B 22 057303

    [17]

    Sun X H, Li C P, Wong W K 2002 J. Am. Chem. Soc. 124 14464

    [18]

    Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 物理学报 62 107101]

    [19]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [20]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李兵, 杨传路, 齐凯天, 张岩, 盛勇 2009 物理学报 58 3104]

    [21]

    Tang C, Wei X L, Tan X, Peng X Y, Sun L Z, Zhong J X 2012 Chin. Phys. B 21 066803

    [22]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [23]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [24]

    Hellmann H 1937 Einführung in die Quantenchemie (Leipzig and Vienna: Franz Deuticke) pp 285–286

    [25]

    Feynman R P 1939 Phys. Rev. 56 340

    [26]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [27]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [28]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1843
  • PDF下载量:  522
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-26
  • 修回日期:  2013-09-01
  • 刊出日期:  2013-12-05

碳硅二炔结构及性质分子动力学模拟研究

  • 1. 上海大学物理系, 上海 200444
    基金项目: 

    国家自然科学基金(批准号:61176118)资助的课题.

摘要: 采用基于量子力学的半经验哈密顿量的计算方法,即SCED-LCAO方法,模拟研究了碳硅二炔的稳定性结构、成键特点、电子结构等性质. 得出其最稳定的结构是单层平面结构,晶格常数为12.251 Å. 它通过 含有两个Si-C三键的链连接六元环构成. 这种平面结构在很大高温范围内都可以保持其稳定特性,直到1520 K时,该基本结构才被破坏,且结构中出现四元环. 体系温度低于1520 K时,均可通过降温,恢复其零温时的结构. 研究还发现这种共轭结构中Si,C 原子间存在稳定的sp杂化形式,对分布函数得出其键长为1.58 Å左右. 高温时sp杂化逐渐转变成其他杂化形式. 计算结果表明,在零温下,该电中性系统中存在离域π键,使得系统中的Si-C键长呈现平均化趋势. 研究表明,碳硅二炔的能隙为1.416 eV,LUMO,HOMO能级分别是0.386 eV和–1.03 eV表明了其n型半导体特性.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回