搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单空位缺陷对二维δ-InSe稳定性的影响

苗瑞霞 王业飞 谢妙春 张德栋

引用本文:
Citation:

单空位缺陷对二维δ-InSe稳定性的影响

苗瑞霞, 王业飞, 谢妙春, 张德栋

Effect of single vacancy defects on two-dimensional δ-InSe stability

Miao Rui-Xia, Wang Ye-Fei, Xie Miao-Chun, Zhang De-Dong
PDF
HTML
导出引用
  • 二维InSe半导体材料由于其优异的电学性能以及适中可调的带隙等优点, 引起了研究者的关注. 材料中的空位缺陷不仅影响材料的光电学特性, 还影响材料的环境稳定性. 相比于InSe材料中的其他相, δ-InSe具有更优异的材料性能, 然而关于对该材料环境稳定性影响的研究未见报道. 本文基于密度泛函理论, 系统研究了O2环境下二维δ-InSe材料的稳定性问题. 结果表明: 1)在O2环境下, 完美δ-InSe表面具有良好的惰性和稳定性, O2分子在其表面从物理吸附到解离吸附需要克服1.827 eV的势垒; 2) Se空位(VSe)的存在则会促进δ-InSe的氧化反应, 被氧化的过程仅需克服0.044 eV的势垒, 说明VSe的存在使δ-InSe在O2环境下的稳定性显著下降, 此外被O2分子氧化的δ-InSe单层有利于H2O分子的解离吸附; 3)含有In空位(VIn)的δ-InSe被氧化的速率较慢, O2分子在VIn表面的物理吸附的吸附能和电荷转移与完美表面基本一致, 被氧化的过程需克服1.234 eV的势垒. 这一研究结果将为更好地理解单空位缺陷对δ-InSe单层的氧化行为提供理论指导, 同时为高可靠二维δ-InSe器件的实验制备提供参考.
    The two-dimensional (2D) semiconductor material of InSe has received much attention due to its excellent electrical properties and moderate adjustable bandgap. The vacancy defects in the material affect not only the optical and electrical properties, but also the environmental stability. Compared with other phases in InSe materials, δ-InSe has superior material properties, however, the effect of environment on this material stabilityhas not been reported. In this work, we systematically investigate the stability of 2D δ-InSe material under oxygen environment based on density functional theory. The results are shown below. Firstly, in an oxygen environment, the perfect δ-InSe surface exhibits good inertness and stability, for O2 molecules need to overcome an exceptionally high energy barrier of 1.827 eV from physical adsorption to chemical adsorption on its surface. Secondly, the presence of Se vacancies (VSe) promotes the oxidation reaction of δ-InSe, which only requires overcoming a low energy barrier of 0.044 eV. This suggests that the stability of δ-InSe in an oxygen environment is significantly reduced because of the presence of VSe. The O2 molecules oxidized δ-InSe monolayer is beneficial to the dissociation and adsorption of H2O molecules. Finally, the oxidation rate of δ-InSe with In vacancies (VIn) is slower, with the adsorption energy and charge transfer involved in the physical adsorption of O2 molecules on the VIn surface being similar to those on a perfect surface. The oxidation process needs to overcome a higher energy barrier of 1.234 eV. The findings of this study will provide theoretical guidance for better understanding the oxidation behavior of single vacancy defects in monolayer δ-InSe, and reference for experimental preparation of high-reliability 2D δ-InSe devices.
      通信作者: 苗瑞霞, miao9508301@163.com
    • 基金项目: 国家自然科学基金(批准号: 51302215, 62105260, 12004303)资助的课题.
      Corresponding author: Miao Rui-Xia, miao9508301@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51302215, 62105260, 12004303).
    [1]

    Hu Y X, Feng W, Dai M J, Yang H H, Chen X S, Liu G B, Zhang S C, Hu P A 2018 Semicond. Sci. Technol. 33 125002Google Scholar

    [2]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T, Gao X P 2015 Nano Lett. 15 3815Google Scholar

    [3]

    Han G, Chen Z G, Drennan J, Zou J 2014 Small 10 2747Google Scholar

    [4]

    Boukhvalov D W, Gürbulak B, Duman S, Wang L, Politano A, Caputi L S, Chiarello G, Cupolillo A 2017 Nanomaterials 7 372Google Scholar

    [5]

    Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, Chai Y, Wang Z, Jin C, Dai J 2019 Nano Lett. 19 2634Google Scholar

    [6]

    Sun Y, Li Y, Li T, Biswas K, Patanè A, Zhang L 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [7]

    Wei X, Dong C, Xu A, Li X 2019 Appl. Surf. Sci. 475 487Google Scholar

    [8]

    Kistanov A A, Cai Y, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 518Google Scholar

    [9]

    Shi L, Zhou Q, Zhao Y, Ouyang Y, Ling C, Li Q, Wang J 2017 J. Phys. Chem. Lett. 8 4368Google Scholar

    [10]

    Xiao K, Carvalho A, Neto A C 2017 Phys. Rev. B 96 054112Google Scholar

    [11]

    苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋 2023 物理学报 72 123101Google Scholar

    Miao R X, Xie M C, Cheng K, Li T T, Yang X F, Wang Y F, Zhang D D 2023 Acta Phys. Sin. 72 123101Google Scholar

    [12]

    Gao J, Li B, Tan J, Chow P, Lu T M, Koratkar N 2016 ACS Nano 10 2628Google Scholar

    [13]

    Kc S, Longo R C, Wallace R M, Cho K 2015 J. Appl. Phys. 117 135301Google Scholar

    [14]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 J. Chem. Phys. 147 104709Google Scholar

    [15]

    Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [16]

    Hohenberg P, Kohn W 1964 Tech. Phys. 136 B864Google Scholar

    [17]

    Kohn W, Sham L J 1965 Tech. Phys. 140 A1133Google Scholar

    [18]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [19]

    Wei X, Dong C, Xu A, Li X, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [20]

    Wu X, Vargas M, Nayak S, Lotrich V, Scoles G 2001 J. Chem. Phys. 115 8748Google Scholar

    [21]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [22]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [23]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305Google Scholar

    [26]

    Kistanov A A, Cai Y, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [27]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [28]

    Ma D, Ju W, Tang Y, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [29]

    Ma D, Li T, He C, Lu Z, Lu Z, Yang Z, Wang Y 2017 arXiv: 1705.05140 [cond-mat.mtrl-sci

  • 图 1  完美δ-InSe单层的晶体结构、能带结构和态密度图 (a) 完美δ-InSe单层超胞结构(俯视图和侧视图), 绿色代表Se原子, 紫色代表In原子; (b) 完美δ-InSe单层的能带结构, 蓝色实线箭头代表带隙(Eg), 绿色虚线代表费米能级(Ef); (c), (d) 完美δ-InSe单层的TDOS和PDOS

    Fig. 1.  Crystal structure, band structure, and density of states diagram of perfect δ-InSe monolayer: (a) Supercell structure of perfect δ-InSe monolayer (top view and side view), where green represents Se atoms and purple represents In atoms; (b) band structure of perfect δ-InSe monolaye, where the blue solid arrow represents the band gap (Eg) and the green dashed line represents the Fermi level (Ef); (c), (d) TDOS and PDOS of perfect δ-InSe monolayer.

    图 2  O2分子在完美δ-InSe单层表面的不同吸附位点(侧视图和俯视图), 红色代表O原子 (a), (e) TIn; (b), (f) TSe2; (c), (g) TB; (d), (h) TSe1

    Fig. 2.  Different adsorption sites of O2 molecules on the perfect δ-InSe monolayer surface (side view and top view), with red representing O atoms: (a), (e) TIn; (b), (f) TSe2; (c), (g) TB; (d), (h) TSe1.

    图 3  O2分子在完美δ-InSe单层上解离成两个O原子的反应途径

    Fig. 3.  Reaction pathway for an O2 molecule to dissociate into two O atom on perfect δ-InSe monolayer.

    图 4  δ-InSe-VSe的晶体结构、能带结构和态密度图 (a) δ-InSe-VSe晶体结构(俯视图和侧视图); (b) δ-InSe-VSe的能带结构, 蓝色实线箭头代表带隙(Eg), 绿色虚线代表费米能级(Ef); (c), (d) δ-InSe-VSe单层的TDOS和PDOS

    Fig. 4.  Crystal structure, band structure, and density of states diagram of δ-InSe-VSe: (a) Crystal structure diagrams of δ-InSe-VSe (top view and side view); (b) band structure of δ-InSe-VSe, where the blue solid arrow represents the band gap (Eg) and the green dashed line represents the Fermi level (Ef); (c), (d) TDOS and PDOS of δ-InSe-VSe.

    图 5  δ-InSe-VIn的晶体结构、能带结构和态密度图 (a) δ-InSe-VIn晶体结构(俯视图和侧视图); (b) δ-InSe-VIn的能带结构; (c), (d) δ-InSe-VIn单层的TDOS和PDOS

    Fig. 5.  Crystal structure, band structure, and density of states diagram of δ-InSe-VIn: (a) Crystal structure diagrams of δ-InSe-VIn (top view and side view); (b) band structure of δ-InSe-VIn; (c), (d) TDOS and PDOS of δ-InSe-VIn.

    图 6  O2分子在δ-InSe-VSeδ-InSe-VIn的吸附位点(侧视图和俯视图) (a) TVSe-1; (b) TVSe-2; (c) TVIn-1; (d) TVIn-2

    Fig. 6.  Adsorption sites of O2 molecules on the δ-InSe-VSe and δ-InSe-VIn (top view and side view): (a) TVSe-1; (b) TVSe-2; (c) TVIn-1; (d) TVIn-2.

    图 7  O2分子吸附在δ-InSe单层的差分电荷密度, 黄色部分表示电荷积累区域, 蓝色部分表示电荷损耗区域(等值面设为1.5×10–4 e/Bohr3) (a) O2分子在完美δ-InSe的差分电荷密度; (b) O2分子在δ-InSe-VSe的差分电荷密度; (c) O2分子在δ-InSe-VIn的差分电荷密度

    Fig. 7.  Differential charge density of O2 adsorbed on δ-InSe monolayer, where yellow regions indicate charge accumulation and blue regions indicate charge depletion (the equivalent surface is set to 1.5×10–4 e/Bohr3) : (a) Differential charge density of O2 adsorbed on perfect δ-InSe; (b) differential charge density of O2 adsorbed on δ-InSe-VSe; (c) differential charge density of O2 adsorbed on δ-InSe-VIn.

    图 8  O2分子在δ-InSe-VSe解离成两个O原子的反应途径

    Fig. 8.  Reaction pathway for an O2 molecule to dissociate into two O atom on δ-InSe-VSe.

    图 9  O2分子在δ-InSe-VIn解离成两个O原子的反应途径

    Fig. 9.  Reaction pathway for an O2 molecule to dissociate into two O atom on δ-InSe-VIn.

    图 10  H2O分子在被O2氧化的δ-InSe单层上发生解离的反应途径

    Fig. 10.  Dissociation pathway of H2O molecules on the δ-InSe monolayer oxidized by oxygen.

    表 1  O2分子在完美δ-InSe单层表面吸附的吸附能($ {E}_{{\mathrm{a}}{\mathrm{d}}} $)和吸附距离($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $)

    Table 1.  Adsorption energy ($ {E}_{{\mathrm{a}}{\mathrm{d}}} $) and adsorption distance ($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $) of O2 molecules on perfect δ-InSe monolayer surface.

    δ-InSeTIn siteTSe2 siteTB siteTSe1 site
    $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $$ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $$ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $$ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $
    O2δ-InSe3.19–0.0783.30–0.0763.59–0.0643.65–0.049
    O2δ-InSe3.46–0.0703.82–0.0604.17–0.0474.19–0.036
    下载: 导出CSV

    表 2  O2分子在δ-InSe-VSeδ-InSe-VIn表面的吸附能($ {E}_{{\mathrm{a}}{\mathrm{d}}} $)和吸附距离($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $)

    Table 2.  Adsorption energy ($ {E}_{{\mathrm{a}}{\mathrm{d}}} $) and adsorption distance ($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $) of O2 molecules on δ-InSe-VSe and δ-InSe-VIn surfaces, respectively.

    TVSe-1 site TVSe-2 site TVIn-1 site TVIn-2 site
    $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $ $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $ $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $ $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $
    1.83 –0.152 2.65 –0.097 2.63 –0.093 2.97 –0.077
    下载: 导出CSV
  • [1]

    Hu Y X, Feng W, Dai M J, Yang H H, Chen X S, Liu G B, Zhang S C, Hu P A 2018 Semicond. Sci. Technol. 33 125002Google Scholar

    [2]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T, Gao X P 2015 Nano Lett. 15 3815Google Scholar

    [3]

    Han G, Chen Z G, Drennan J, Zou J 2014 Small 10 2747Google Scholar

    [4]

    Boukhvalov D W, Gürbulak B, Duman S, Wang L, Politano A, Caputi L S, Chiarello G, Cupolillo A 2017 Nanomaterials 7 372Google Scholar

    [5]

    Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, Chai Y, Wang Z, Jin C, Dai J 2019 Nano Lett. 19 2634Google Scholar

    [6]

    Sun Y, Li Y, Li T, Biswas K, Patanè A, Zhang L 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [7]

    Wei X, Dong C, Xu A, Li X 2019 Appl. Surf. Sci. 475 487Google Scholar

    [8]

    Kistanov A A, Cai Y, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 518Google Scholar

    [9]

    Shi L, Zhou Q, Zhao Y, Ouyang Y, Ling C, Li Q, Wang J 2017 J. Phys. Chem. Lett. 8 4368Google Scholar

    [10]

    Xiao K, Carvalho A, Neto A C 2017 Phys. Rev. B 96 054112Google Scholar

    [11]

    苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋 2023 物理学报 72 123101Google Scholar

    Miao R X, Xie M C, Cheng K, Li T T, Yang X F, Wang Y F, Zhang D D 2023 Acta Phys. Sin. 72 123101Google Scholar

    [12]

    Gao J, Li B, Tan J, Chow P, Lu T M, Koratkar N 2016 ACS Nano 10 2628Google Scholar

    [13]

    Kc S, Longo R C, Wallace R M, Cho K 2015 J. Appl. Phys. 117 135301Google Scholar

    [14]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 J. Chem. Phys. 147 104709Google Scholar

    [15]

    Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [16]

    Hohenberg P, Kohn W 1964 Tech. Phys. 136 B864Google Scholar

    [17]

    Kohn W, Sham L J 1965 Tech. Phys. 140 A1133Google Scholar

    [18]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [19]

    Wei X, Dong C, Xu A, Li X, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [20]

    Wu X, Vargas M, Nayak S, Lotrich V, Scoles G 2001 J. Chem. Phys. 115 8748Google Scholar

    [21]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [22]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [23]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305Google Scholar

    [26]

    Kistanov A A, Cai Y, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [27]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [28]

    Ma D, Ju W, Tang Y, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [29]

    Ma D, Li T, He C, Lu Z, Lu Z, Yang Z, Wang Y 2017 arXiv: 1705.05140 [cond-mat.mtrl-sci

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [4] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究. 物理学报, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [5] 王转玉, 康伟丽, 贾建峰, 武海顺. Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究. 物理学报, 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [6] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [7] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性. 物理学报, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [8] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变. 物理学报, 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [9] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响. 物理学报, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [10] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [11] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [12] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究. 物理学报, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [13] 李守阳, 孙继忠, 张治海, 刘升光, 王德真. 单空位缺陷对载能氢原子与石墨层间碰撞的能量交换的影响的分子动力学研究. 物理学报, 2011, 60(5): 057901. doi: 10.7498/aps.60.057901
    [14] 石玉仁, 张娟, 杨红娟, 段文山. mKdV方程的双扭结单孤子及其稳定性研究. 物理学报, 2010, 59(11): 7564-7569. doi: 10.7498/aps.59.7564
    [15] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响. 物理学报, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [17] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究. 物理学报, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性. 物理学报, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
计量
  • 文章访问数:  658
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-09-26
  • 上网日期:  2023-11-16
  • 刊出日期:  2024-02-20

/

返回文章
返回