搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维Sinai台球系统的量子混沌研究

秦陈陈 杨双波

二维Sinai台球系统的量子混沌研究

秦陈陈, 杨双波
PDF
导出引用
  • 研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系. 观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态. 还研究了同心与非同心Sinai 台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在=3/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡.
    [1]

    Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag) pp254-281, 282-321

    [2]

    Robinett R W 1996 Am. J. Phys. 64 440

    [3]

    Lu J, Du M L 2004 Acta Phys. Sin. 53 2450 (in Chinese) [陆军, 杜孟利 2004 物理学报 53 2450]

    [4]

    Berry M V 1981 Eur. J. Phys. 2 91

    [5]

    Heller E J, O'Connor P W, Gehlen J 1989 Physica Scripta 40 354

    [6]

    Cheon T, Cohen T D 1989 Phys. Rev. Lett. 62 2769

    [7]

    Tuan P H, Yu Y T, Chiang P Y, Liang H C, Huang K F, Chen Y F 2012 Phys. Rev. E 85 026202

    [8]

    Shigehara T 1994 Phys. Rev. E 50 4357

    [9]

    Nakamura K, Thomas H 1988 Phys. Rev. Lett. 61 247

    [10]

    Wilkinson P B, Fromhold T M, Eaves L, Sheard F W, Miura N, Takamasu T 1996 Nature 380 606

    [11]

    Marcus C M, Rimberg A J, Westervelt R M, Hopkins P F, Gossard A C 1992 Phys. Rev. Lett. 69 506

    [12]

    Shudo A, Shimizu Y 1993 Phys. Rev. E 47 54

    [13]

    Šeba P, Zyczkowski 1991 Phys. Rev. A 44 3457

    [14]

    Kudroli A, Kidambi V, Sridhar S 1995 Phys. Rev. Lett. 75 822

    [15]

    Stöckmann H J 1999 Quantum Chaos (Cambridge: Cambridge Vniversity Press) pp86-92

    [16]

    Stöckmann H J, Stein J 1990 Phys. Rev. Lett. 64 2215

    [17]

    Kaufman D L, Kosztin I, Schulten K 1999 Am. J. Phys. 67 133

    [18]

    Heller E J 1984 Phys. Rev. Lett. 53 1515

    [19]

    Bogomolny E, Schmit C 2004 Phys. Rev. Lett. 92 244102

    [20]

    Bogomolny E, Dietz B, Friedrich T 2006 Phys. Rev. Lett. 97 254102

    [21]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1896

    [22]

    Zhang Y H, Xu X Y, Lin S L 2009 Chin. Phys. B 18 35

    [23]

    Du M L, Zhang Y H, Xu X Y 2005 Acta Phys. Sin. 54 4538 (in Chinese) [杜孟利, 张延惠, 徐学友 2005 物理学报 54 4538]

    [24]

    Balian R, Bloch C 1974 Ann. Phys. 85 514

    [25]

    Haak F 1991 Quantum Signature of Chaos (Berlin, Heidelberg: Springer) pp52-54

  • [1]

    Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag) pp254-281, 282-321

    [2]

    Robinett R W 1996 Am. J. Phys. 64 440

    [3]

    Lu J, Du M L 2004 Acta Phys. Sin. 53 2450 (in Chinese) [陆军, 杜孟利 2004 物理学报 53 2450]

    [4]

    Berry M V 1981 Eur. J. Phys. 2 91

    [5]

    Heller E J, O'Connor P W, Gehlen J 1989 Physica Scripta 40 354

    [6]

    Cheon T, Cohen T D 1989 Phys. Rev. Lett. 62 2769

    [7]

    Tuan P H, Yu Y T, Chiang P Y, Liang H C, Huang K F, Chen Y F 2012 Phys. Rev. E 85 026202

    [8]

    Shigehara T 1994 Phys. Rev. E 50 4357

    [9]

    Nakamura K, Thomas H 1988 Phys. Rev. Lett. 61 247

    [10]

    Wilkinson P B, Fromhold T M, Eaves L, Sheard F W, Miura N, Takamasu T 1996 Nature 380 606

    [11]

    Marcus C M, Rimberg A J, Westervelt R M, Hopkins P F, Gossard A C 1992 Phys. Rev. Lett. 69 506

    [12]

    Shudo A, Shimizu Y 1993 Phys. Rev. E 47 54

    [13]

    Šeba P, Zyczkowski 1991 Phys. Rev. A 44 3457

    [14]

    Kudroli A, Kidambi V, Sridhar S 1995 Phys. Rev. Lett. 75 822

    [15]

    Stöckmann H J 1999 Quantum Chaos (Cambridge: Cambridge Vniversity Press) pp86-92

    [16]

    Stöckmann H J, Stein J 1990 Phys. Rev. Lett. 64 2215

    [17]

    Kaufman D L, Kosztin I, Schulten K 1999 Am. J. Phys. 67 133

    [18]

    Heller E J 1984 Phys. Rev. Lett. 53 1515

    [19]

    Bogomolny E, Schmit C 2004 Phys. Rev. Lett. 92 244102

    [20]

    Bogomolny E, Dietz B, Friedrich T 2006 Phys. Rev. Lett. 97 254102

    [21]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1896

    [22]

    Zhang Y H, Xu X Y, Lin S L 2009 Chin. Phys. B 18 35

    [23]

    Du M L, Zhang Y H, Xu X Y 2005 Acta Phys. Sin. 54 4538 (in Chinese) [杜孟利, 张延惠, 徐学友 2005 物理学报 54 4538]

    [24]

    Balian R, Bloch C 1974 Ann. Phys. 85 514

    [25]

    Haak F 1991 Quantum Signature of Chaos (Berlin, Heidelberg: Springer) pp52-54

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2016
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-04-11
  • 刊出日期:  2014-07-05

二维Sinai台球系统的量子混沌研究

  • 1. 南京师范大学物理科学与技术学院, 南京 210023

摘要: 研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系. 观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态. 还研究了同心与非同心Sinai 台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在=3/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回