搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光催化半导体Ag2ZnSnS4的第一性原理研究

黄丹 鞠志萍 李长生 姚春梅 郭进

光催化半导体Ag2ZnSnS4的第一性原理研究

黄丹, 鞠志萍, 李长生, 姚春梅, 郭进
PDF
导出引用
  • 通过基于密度泛函理论的第一性原理计算, 对光催化水解半导体Ag2ZnSnS4的改性方案做了理论研究. 在与同类化合物的带边位置比较后发现, Cu与Ge共掺杂能够在Ag2ZnSnS4中实现禁带宽度和带边位置的双重调节, 从而使其能带结构优化到光催化水解最为理想的状态. 另外, CuGaSe2 可与Ag2ZnSnS4形成type-Ⅱ型带阶结构, 制备它们的异质结同样可用于提升其光催化水解性能.
    • 基金项目: 国家自然科学基金(批准号: 61204104, 11104069, 51271061, 61475045)、广西自然科学基金(批准号: 2014GXNSFCA118002)、广西大学科研基金(批准号: XGZ130718)和湖南省光电信息集成与光学制造技术重点实验室资助的课题.
    [1]

    Chen X B, Shen S H, Guo L J, Mao S S 2010 Chem. Rev. 110 6503

    [2]

    Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H 2012 Adv. Mater. 24 229

    [3]

    Ping Y, Rocc D, Galli G 2013 Chem. Soc. Rev. 42 2437

    [4]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [5]

    Gai Y Q, Li J B, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [6]

    Khaselev O, Turner J A 1998 Science 280 425

    [7]

    Yin W J, Tang H W, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [8]

    Chen X B, Mao S S 2007 Chem. Rev. 107 2891

    [9]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [10]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [11]

    Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 物理学报 62 043102]

    [12]

    Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305

    [13]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [14]

    Zhang K, Guo L J 2013 Catal. Sci. Technol. 3 1672

    [15]

    Wang C H, Cheng K W, Tseng C J 2011 Sol. Energy Mater. Sol. Cells 95 453

    [16]

    Tseng C J, Wang C H, Cheng K W 2012 Sol. Energy Mater. Sol. Cells 96 33

    [17]

    Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C 2014 Chem. Soc. Rev. 43 5234

    [18]

    Cheng K W, Liu P H 2011 Sol. Energy Mater. Sol. Cells 95 1859

    [19]

    Cheng Q, Peng X H, Chan C K 2013 Chem. Sus. Chem. 6 102

    [20]

    Huang D, Persson C 2014 Chem. Phys. Lett. 591 189

    [21]

    Li K, Chai B, Peng T Y, Mao J, Zan L 2013 RSC Adv. 3 253

    [22]

    Sasamura T, Osaki T, Kameyama T, Shibayama T, Kudo A, Kuwabata S, Torimoto T 2012 Chem. Lett. 41 1009

    [23]

    Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289

    [24]

    Tsuji I, Shimodaira Y, Kato H, Kobayashi H, Kudo A 2010 Chem. Mater. 22 1402

    [25]

    Ikeda S, Nakamura T, Harada T, Matsumura M 2010 Phys. Chem. Chem. Phys. 12 13943

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Chen S Y, Gong X G, Walsh A, Wei S H 2011 Physics 40 248 (in Chinese) [陈时友, 龚新高, Aron Walsh, 魏苏淮 2011 物理 40 248]

    [32]

    Walsh A, Chen S Y, Wei S H, Gong X G 2012 Adv. Energy Mater. 2 400

    [33]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [34]

    Scanlon D O, Watson G W 2011 Phys. Chem. Chem. Phys. 13 9667

    [35]

    Walsh A, Da Silva J L F, Wei S H 2008 Phys. Rev. B 78 075211

    [36]

    Burton L A, Walsh A 2013 Appl. Phys. Lett. 102 132111

    [37]

    Dandrea R G, Duke C B, Zunger A 1992 J. Vac. Sci. Technol. B 10 1744

    [38]

    Zhao Y J, Zunger A 2004 Phys. Rev. B 69 104422

    [39]

    Zhang S B, Wei S H, Zunger A 2000 Phys. Rev. Lett. 84 1232

    [40]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [41]

    Chen S Y, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [42]

    Shi L, Yin P Q 2013 Dalton Trans. 42 13607

    [43]

    Khyzhun O Y, Ocheretova V A, Fedorchuk A O, Parasyuk O V 2014 Opt. Mater. 36 1396

    [44]

    Marsen B, Cole B, Miller E L 2008 Sol. Energy Mater. Sol. Cells 92 1054

    [45]

    Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K 2013 J. Am. Chem. Soc. 135 3733

    [46]

    Glatzel Th, Fuertes Marrón D, Schedel-Niedrig Th, Sadewasser S, Lux-Steiner M Ch 2002 Appl. Phys. Lett. 81 2017

    [47]

    Arushanov E, Siebentritt S, Schedel-Niedrig T, Lux-Steiner M Ch 2006 J. Appl. Phys. 100 063715

    [48]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

  • [1]

    Chen X B, Shen S H, Guo L J, Mao S S 2010 Chem. Rev. 110 6503

    [2]

    Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H 2012 Adv. Mater. 24 229

    [3]

    Ping Y, Rocc D, Galli G 2013 Chem. Soc. Rev. 42 2437

    [4]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [5]

    Gai Y Q, Li J B, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [6]

    Khaselev O, Turner J A 1998 Science 280 425

    [7]

    Yin W J, Tang H W, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [8]

    Chen X B, Mao S S 2007 Chem. Rev. 107 2891

    [9]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [10]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [11]

    Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 物理学报 62 043102]

    [12]

    Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305

    [13]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [14]

    Zhang K, Guo L J 2013 Catal. Sci. Technol. 3 1672

    [15]

    Wang C H, Cheng K W, Tseng C J 2011 Sol. Energy Mater. Sol. Cells 95 453

    [16]

    Tseng C J, Wang C H, Cheng K W 2012 Sol. Energy Mater. Sol. Cells 96 33

    [17]

    Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C 2014 Chem. Soc. Rev. 43 5234

    [18]

    Cheng K W, Liu P H 2011 Sol. Energy Mater. Sol. Cells 95 1859

    [19]

    Cheng Q, Peng X H, Chan C K 2013 Chem. Sus. Chem. 6 102

    [20]

    Huang D, Persson C 2014 Chem. Phys. Lett. 591 189

    [21]

    Li K, Chai B, Peng T Y, Mao J, Zan L 2013 RSC Adv. 3 253

    [22]

    Sasamura T, Osaki T, Kameyama T, Shibayama T, Kudo A, Kuwabata S, Torimoto T 2012 Chem. Lett. 41 1009

    [23]

    Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289

    [24]

    Tsuji I, Shimodaira Y, Kato H, Kobayashi H, Kudo A 2010 Chem. Mater. 22 1402

    [25]

    Ikeda S, Nakamura T, Harada T, Matsumura M 2010 Phys. Chem. Chem. Phys. 12 13943

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Chen S Y, Gong X G, Walsh A, Wei S H 2011 Physics 40 248 (in Chinese) [陈时友, 龚新高, Aron Walsh, 魏苏淮 2011 物理 40 248]

    [32]

    Walsh A, Chen S Y, Wei S H, Gong X G 2012 Adv. Energy Mater. 2 400

    [33]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [34]

    Scanlon D O, Watson G W 2011 Phys. Chem. Chem. Phys. 13 9667

    [35]

    Walsh A, Da Silva J L F, Wei S H 2008 Phys. Rev. B 78 075211

    [36]

    Burton L A, Walsh A 2013 Appl. Phys. Lett. 102 132111

    [37]

    Dandrea R G, Duke C B, Zunger A 1992 J. Vac. Sci. Technol. B 10 1744

    [38]

    Zhao Y J, Zunger A 2004 Phys. Rev. B 69 104422

    [39]

    Zhang S B, Wei S H, Zunger A 2000 Phys. Rev. Lett. 84 1232

    [40]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [41]

    Chen S Y, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [42]

    Shi L, Yin P Q 2013 Dalton Trans. 42 13607

    [43]

    Khyzhun O Y, Ocheretova V A, Fedorchuk A O, Parasyuk O V 2014 Opt. Mater. 36 1396

    [44]

    Marsen B, Cole B, Miller E L 2008 Sol. Energy Mater. Sol. Cells 92 1054

    [45]

    Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K 2013 J. Am. Chem. Soc. 135 3733

    [46]

    Glatzel Th, Fuertes Marrón D, Schedel-Niedrig Th, Sadewasser S, Lux-Steiner M Ch 2002 Appl. Phys. Lett. 81 2017

    [47]

    Arushanov E, Siebentritt S, Schedel-Niedrig T, Lux-Steiner M Ch 2006 J. Appl. Phys. 100 063715

    [48]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2012
  • PDF下载量:  1184
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21
  • 修回日期:  2014-08-13
  • 刊出日期:  2014-12-05

光催化半导体Ag2ZnSnS4的第一性原理研究

  • 1. 湖南文理学院物理与电子科学学院, 常德 415000;
  • 2. 广西大学物理科学与工程技术学院, 广西高校新能源材料及相关技术重点实验室, 南宁 530004
    基金项目: 

    国家自然科学基金(批准号: 61204104, 11104069, 51271061, 61475045)、广西自然科学基金(批准号: 2014GXNSFCA118002)、广西大学科研基金(批准号: XGZ130718)和湖南省光电信息集成与光学制造技术重点实验室资助的课题.

摘要: 通过基于密度泛函理论的第一性原理计算, 对光催化水解半导体Ag2ZnSnS4的改性方案做了理论研究. 在与同类化合物的带边位置比较后发现, Cu与Ge共掺杂能够在Ag2ZnSnS4中实现禁带宽度和带边位置的双重调节, 从而使其能带结构优化到光催化水解最为理想的状态. 另外, CuGaSe2 可与Ag2ZnSnS4形成type-Ⅱ型带阶结构, 制备它们的异质结同样可用于提升其光催化水解性能.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回